Based on the definition of the apparent horizon in a general two-dimensional dilaton gravity theory, we analyze the tunnelling phenomenon near the apparent horizon. In this theory the definition of the horizon is very different from those in higher-dimensional gravity theories. By using the Hamilton-Jacobi method, the spectrum of the radiation is obtained and the temperature of the radiation is read out from this spectrum. The temperature is proportional to the surface gravity of the apparent horizon as usual. Besides, in stationary cases we calculate the spectrum by using Parikh and Wilczek's null geodesic method and the result conforms to that obtained by using the Harnilton-Jacobi method. This is expected since the flamilton-Jacobi method applies to generic spacetimes, including stationary ones.
Considering the contribution of both the outer and inner horizons, the Hamilton-Jacobi method is applied to a Kerr-Newman black hole and a negative temperature of the inner horizon is obtained. Under the negative temperature inside the black hole, the thermodynamics of the two horizons is studied, and the new Bekenstein-Smarr formula is given. The entropies of the inner and outer horizons are all positive. The new entropy expression of the black hole satisfies the Nernst Theorem and can be regarded as the Planck absolute entropy.