This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples.
Objective:To explore and validate the potential targets of Paeoniae Radix Alba(P.Radix,Bai Shao)in protecting against chemical liver injury through network pharmacology,molecular docking technology,and in vitro cell experiments.Methods:Network pharmacology was used to identify the common potential targets of P.Radix and chemical liver injury.Molecular docking was used to fit the components,which were subsequently verified in vitro.A cell model of hepatic fibrosis was established by activating hepatic stellate cell(HSC)-LX2 cells with 10 ng/mL transforming growth factor-β1.The cells were exposed to different concentrations of total glucosides of paeony(TGP),the active substance of P.Radix,and then evaluated using the cell counting kit-8 assay,enzyme-linked immunosorbent assay,and western blot.Results:Analysis through network pharmacology revealed 13 key compounds of P.Radix,and the potential targets for preventing chemical liver injury were IL-6,AKT serine/threonine kinase 1,jun protooncogene,heat shock protein 90 alpha family class A member 1(HSP90AA1),peroxisome proliferator activated receptor gamma(PPARG),PTGS2,and CASP3.Gene Ontology(GO)enrichment analysis indicated the involvement of response to drugs,membrane rafts,and peptide binding.Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis revealed that the main pathways involved lipid and atherosclerosis and chemical carcinogenesis-receptor activation.Paeoniflorin and albiflorin exhibited strong affinity for HSP90AA1,PTGS2,PPARG,and CASP3.Different concentrations of TGP can inhibit the expression of COL-I,COL-III,IL-6,TNF-a,IL-1β,HSP-90a,and PTGS2 while increasing the expression of PPAR-γand CASP3 in activated HSC-LX2 cells.Conclusion:P.Radix primarily can regulate targets such as HSP90AA1,PTGS2,PPARG,CASP3.TGP,the main active compound of P.Radix,protects against chemical liver injury by reducing the inflammatory response,activating apoptotic proteins,and promoting the apoptosis of activated HSCs.