Novel electron states stabilized by Coulomb interactions attract tremendous interests in condensed matter physics.These states are studied by corresponding phase transitions occurring at extreme conditions such as mK temperatures and high magnetic field.In this work,we introduce a magneto-optical Kerr effect measurement system to comprehensively explore these phases in addition to conventional transport measurement.This system,composed of an all-fiber zero-loop Sagnac interferometer and in situ piezo-scanner inside a dilution refrigerator,operates below 100 m K,with a maximum field of 12 Tesla and has a resolution as small as 0.2μrad.As a demonstration,we investigate TbMn_(6)Sn_(6),where the manganese atoms form Kagome lattice that hosts topological non-trivial Dirac cones.We observed two types of Kerr signals,stemming from its fully polarized ferromagnetic ground state and positive charged carriers within the Dirac-like dispersion.
Aiming at the approximate measurement of magnetic rotation angle in optical current sensor based on light intensity detection mode,this paper proposes a current measurement method based on triangular constant transformation to reconstruct magnetic rotation angle,so as to avoid the large current measurement error caused by the approximate measurement of the magnetic rotation angle.By extracting the direct current(DC)component and the alternating current(AC)component of the light intensity signal detected by the photoelectric detector(PD),the sine signal containing the magnetic rotation angle is directly obtained by dividing the two components,and then the triangular identity transformation method is used to linearly demodulate the magnetic rotation angle and reconstruct the current waveform.The experimental results show that the relative error of current measurement does not exceed 1.40%in the current range of 0.05—0.50 A,which is less than the approximate linear measurement(ALM)method,and the magnetic rotation angle and the current have a good linear relationship.
Latent fingerprints are extremely vital for personal identification and criminalinvestigation,and potential information recognition techniques have been widelyused in the fields of information and communication electronics.Although physicalpowder dusting methods have been frequently employed to develop latent fingerprintsand most of them are carried out by using single component powders ofmicron-sized fluorescent particles,magnetic powders,or metal particles,there isstill an enormous challenge in producing high-resolution image of latent fingerprintsat different backgrounds or substrates.Herein,a novel and effectivenanoimpregnation method is developed to synthesize bifunctional magnetic fluorescentmesoporous microspheres for latent fingerprints visualization by growthof mesoporous silica(mesoSiO_(2))on magical Fe_(3)O_(4) core and then deposition offluorescent YVO4:Eu^(3+)nanoparticles in the mesopores.The obtainedFe_(3)O_(4)@mesoSiO_(2)@YVO4:Eu^(3+)microspheres possess spatially isolated magneticcore and fluorescent shell which were insulated by mesoporous silica layer.Dueto their small particle size of submicrometer scale,high magnetization and lowmagnetic remanence as well as the combined magnetic and fluorescent properties,the microspheres show superior performance in visual latent fingerprint recognitionwith high contrast,high anti-interference,and sensitivity as well as goodretention on multifarious substrates regardless of surface permeability,roughness,refraction,colorfulness,and background fluorescence interference,and it makesthem ideal candidates for practical application in fingerprint visualization andeven magneto-optic information storage.
Bingjie YuShude LiuWenhe XiePanpan PanPeng ZhouYidong ZouQin YueYonghui Deng
We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes(GNFs)with transition metal elements attached on the boundary[TM&GNFs(TM=Fe,Co,Ni)].It is shown that the spin-flip process on TM&GNFs is highly influenced by the involved element species and the position attached to the nanoflakes.Furthermore,taking Ni&GNF as an example,the first-principles tensile test predicts that the variation of the C-Ni bond length plays an important role in the spin density distribution,especially for the low-lying magnetic states,and can therefore dominate the spin-flip processes.The fastest spin-flip scenario is achieved within 80 fs in a Ni&GNF structure under 10%tensile strain along the C-Ni bond.The local deformation modulation of spin flip provides the precursory guidance for further study of ultrafast magnetization control in GNFs,which could lead to potential applications in future integrated straintronic devices.