Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.
为了比较大跨度铁路连续梁桥与梁拱组合桥梁轨相互作用特点,以(82.9+172.0+82.9)m连续梁桥与梁拱组合桥为例,分别建立考虑钢轨-主梁-桥墩-基础、钢轨-拱肋-吊杆-主梁-桥墩-基础这2种桥梁梁轨系统一体化有限元模型,系统对比温度、活载、制动力、混凝土收缩徐变等作用下连续梁桥与梁拱组合桥上无缝线路纵向力的分布规律,并对线路纵向阻力、钢轨伸缩调节器设置等参数的影响进行探讨。研究结果表明:采用德国规范与中国无缝线路规范中的纵向阻力模型,连续梁桥钢轨伸缩力最大值与梁拱组合桥的钢轨伸缩力最大值相比分别大2.3%和2.0%;连续梁桥有载侧和无载侧钢轨最不利挠曲应力与梁拱组合桥的无载侧钢轨最不利挠曲应力相比均大67.8%;温度与断轨位置对断轨力影响显著;2类桥梁钢轨应力在同向列车制动与桥梁收缩徐变作用下变化规律与大小基本一致;对下部结构,连续梁桥对梁体升温敏感程度比连续梁拱桥的大,在挠曲工况下,两者墩顶水平力最大差为176.1 k N。
将温度荷载简化为轨道板内的剪切荷载,分析了无砟轨道结构的层间界面破坏形式与粘结机理;基于黏聚力本构模型与水泥乳化沥青砂浆界面粘结力实验结果,建立预制板式无砟轨道结构界面有限元模型,研究剪切荷载作用下无砟轨道界面应力、界面粘结承载力、界面相对位移以及界面裂缝的演化规律.结果表明:界面剪应力与正应力纵向分布不均匀,在轨道板端部最大,且界面正应力使轨道板在端部竖向受拉;剪切荷载作用下,界面剪应力超过最大粘结强度,造成界面逐段破坏,界面最大粘结承载力为264.8 k N;轨道板相对于砂浆充填层的纵向位移随剪切荷载的增大而持续增大,最终界面出现纵向裂缝,而其竖向张开位移在界面纵向裂缝出现后反而逐渐闭合,界面发生剪切破坏导致无砟轨道结构脱层失效.