您的位置: 专家智库 > >

国家自然科学基金(40575049)

作品数:3 被引量:16H指数:2
相关作者:邵爱梅张蕾邱崇践更多>>
相关机构:兰州大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球更多>>

文献类型

  • 3篇期刊文章
  • 1篇会议论文

领域

  • 4篇天文地球

主题

  • 1篇订正
  • 1篇数值天气预报
  • 1篇四维变分
  • 1篇同化
  • 1篇奇异值
  • 1篇奇异值分解
  • 1篇浅水方程
  • 1篇资料同化
  • 1篇误差订正
  • 1篇显式
  • 1篇非系统性
  • 1篇变分
  • 1篇变分方法
  • 1篇RADIAN...
  • 1篇RETRIE...
  • 1篇SATELL...
  • 1篇SHALLO...
  • 1篇SINGUL...
  • 1篇SVD分解
  • 1篇THREE-...

机构

  • 2篇兰州大学

作者

  • 2篇邱崇践
  • 2篇邵爱梅
  • 1篇张蕾
  • 1篇希爽

传媒

  • 1篇中国科学(D...
  • 1篇Advanc...
  • 1篇Scienc...

年份

  • 1篇2010
  • 1篇2008
  • 2篇2007
3 条 记 录,以下是 1-4
排序方式:
An explicit four-dimensional variational data assimilation method被引量:11
2007年
A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.
QIU ChongJianZHANG LeiSHAO AiMei
关键词:ASSIMILATIONEXPLICITMETHODSINGULARSHALLOW
A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles
2008年
A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method.
张蕾邱崇践黄建平
关键词:RETRIEVALEOF
修正数值天气预报的非系统性误差的变分方法
变分方法被用于根据分析场来估计数值天气预报的非系统性误差,从而对预报作出订正.这一方法中假设预报误差与预报场的某种组合线性相关,奇异值分解(SVD)技术被用于由一系列预报和分析场样本产生的相关矩阵得到预报场和误差场之间的...
邵爱梅希爽邱崇践
关键词:变分方法SVD分解误差订正
文献传递
一种显式四维变分资料同化方法被引量:6
2007年
提出一种新的资料同化方法——显式变分四维同化方法,该方法将奇异值分解(SVD)技术用于四维空间的预报集合提取正交基向量,这些基向量不但能够表现分析变量的空间结构,也能反映它的时间演变特征.将分析变量依截断的基向量展开后,控制变量会显式地出现在代价函数中,避免了传统的变分四维同化方法所必需的伴随模式的运用,使同化过程变得简单.用浅水方程模式和人造资料进行的一系列数值试验对所提方法的有效性作了检验并和传统的变分四维同化方法进行比较.结果表明,在观测点很密集,观测和模式都没有误差的情况下,它不如传统的变分四维同化方法好.但是当观测点稀疏时显式方法会好于传统的方法,它对模式误差及观测误差的敏感性也远远小于传统的方法.
邱崇践张蕾邵爱梅
关键词:资料同化四维变分奇异值分解浅水方程
共1页<1>
聚类工具0