A method of QWI ( quantum well intermixing) realizing through plasma-enhanced chemical vapordepositiom (PECVD) SiO2 film following ion implantation was investigated. PECVD 200 mn SiO2 film after 160 keV phosphorus(P) ion implantation was performed to induce InP-based multiple-quantum-well (MQW) laser structural intermixing, annealing process was carried out at 780 ℃ for 30 seconds under N2 flue, the blue shift ofphotoluminescenee (PL) peak related to implanted dose : 1 × 10^11, 1 × 10^12, 1×10^13 ,3 × 10^13 , 7× 10^13 ion/ cm^2 is 22 nm, 65 nm, 104 nm, 109 nm, 101 nm, respectively. Under the same conditions, by comparing the blue shift of PL peak with P ion implantation only, slight differentiation between the two methods was observed, and results reveal that the defects in the implanting layers generated by ion implantation are much more than those in SiO2 film. So, the blue shift results mainly from ion implantation. However, SiO2 film also may promote the quantum well intermixing.