您的位置: 专家智库 > >

国家自然科学基金(61172008)

作品数:7 被引量:50H指数:3
相关作者:明东綦宏志何峰赵欣张力新更多>>
相关机构:天津大学天津市人民医院中国航天员科研训练中心更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划教育部“新世纪优秀人才支持计划”更多>>
相关领域:自动化与计算机技术医药卫生机械工程生物学更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 4篇自动化与计算...
  • 2篇医药卫生
  • 1篇生物学
  • 1篇机械工程
  • 1篇电子电信

主题

  • 2篇信号
  • 2篇卒中
  • 2篇脑电
  • 2篇脑电信号
  • 2篇脑卒中
  • 1篇电图
  • 1篇心电
  • 1篇血性
  • 1篇抑郁
  • 1篇抑郁症
  • 1篇支持向量
  • 1篇支持向量机
  • 1篇生理信号
  • 1篇探测器
  • 1篇缺血
  • 1篇缺血性脑卒中
  • 1篇热释电
  • 1篇热释电红外
  • 1篇热释电红外探...
  • 1篇主成分

机构

  • 4篇天津大学
  • 2篇天津市人民医...
  • 1篇中国航天员科...
  • 1篇邓迪大学

作者

  • 4篇明东
  • 3篇綦宏志
  • 3篇何峰
  • 2篇孙长城
  • 2篇赵欣
  • 2篇张力新
  • 2篇王春方
  • 2篇杜金刚
  • 2篇万柏坤
  • 2篇王勇军
  • 1篇陈善广
  • 1篇徐强
  • 1篇李佳佳
  • 1篇张希
  • 1篇柯余峰
  • 1篇张颖
  • 1篇杨轶星
  • 1篇王威杰
  • 1篇焦学军
  • 1篇王春慧

传媒

  • 2篇Transa...
  • 2篇国际生物医学...
  • 1篇仪器仪表学报
  • 1篇电子测量与仪...
  • 1篇Instru...

年份

  • 2篇2015
  • 4篇2014
  • 1篇2013
7 条 记 录,以下是 1-7
排序方式:
缺血性脑卒中患者脑电信号的样本熵特征分析被引量:6
2015年
目的探究不同病程缺血性脑卒中患者脑电图(EEG)非线性复杂度特征。方法对20例不同病程的缺血性脑卒中患者及10例健康人各频段EEG信号进行样本熵特征提取及统计学分析。结果脑卒中患者全频段EEG信号样本熵在大部分导联处显著小于健康人;不同病程卒中患者仪频段样本熵在额叶、颞叶及枕叶差异具有统计学意义(P〈0.05),部分导联处α频段样本熵与卒中后时间显著线性负相关。结论缺血性脑卒中患者存在异常神经元放电活动,利用样本熵探究脑卒中患者EEG复杂度异常改变初步可行,值得深入研究。
王春方孙长城张希王勇军綦宏志何峰赵欣万柏坤张颖杜金刚明东
关键词:缺血性脑卒中脑电图病程
基于生理信号的脑力负荷检测及自适应自动化系统研究:40年回顾与最新进展被引量:32
2015年
人-机系统的脑力负荷评估和作业过程中的脑力负荷检测是工效学的重要研究内容,基于生理信号实时脑力负荷监测能够实现根据脑力负荷在人-机系统中在作业人员与自动化系统之间动态分配任务,即自适应自动化,进而能够优化人-机系统设计、避免过高的脑力负荷、降低人误风险。基于生理信号实现脑力负荷的检测研究从最早NASA的探索性研究至今已有40多年,近十多年逐渐成为工效学中新的研究热点,并且基于脑电、心电、功能性近红外光谱的自适应自动化在诸如模拟飞行、模拟无人机控制等任务中已被证明能够改善作业绩效和作业人员的主观感受。但近年来部分研究报告也表明基于生理信号的脑力负荷检测存在跨人、跨时间、跨任务的挑战,未来还有较大发展空间。本综述将回顾基于生理信号的脑力负荷检测和基于脑力负荷的自适应自动化40年来的研究历程和最新研究进展。
明东柯余峰何峰赵欣王春慧綦宏志焦学军张力新陈善广
关键词:生理信号心电
Electric Wheelchair Control System Using Brain-Computer Interface Based on Alpha-Wave Blocking被引量:2
2014年
A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.
明东付兰陈龙汤佳贝綦宏志赵欣周鹏张力新焦学军王春慧万柏坤
Time-Frequency Analysis of EEG Signals Evoked by Voluntary, Stimulated and Imaginary Motions
2014年
In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.
明东李南南付安爽徐瑞邱爽徐强周鹏张力新万柏坤
关键词:ELECTROENCEPHALOGRAM
基于热释电红外信息的人体身份识别研究(英文)被引量:3
2014年
设计并实现了一套由热释电传感器和编码的菲涅尔透镜组成的生物特征跟踪识别系统。对传感器得到的生物信号采用了2种方法提取特征:一种是时域方法,即通过AR模型提取自回归系数;另一种是频域方法,即通过主成分分析后的傅里叶变换提取频谱信息。最后采用支持向量机的方法分别验证了2种特征的识别性能。16名受试者在3种行走速度实验环境下的初步结果显示,时域特征的正确识别率为66.48%,而频域特征的识别率则达到了86.5%。上述结果表明了热释电信息用于人体身份识别的潜能,并证明了个体差异与步态频率信息的强相关性。
张力新李佳佳杨轶星何峰王威杰明东
关键词:热释电红外探测器AR模型傅里叶变换主成分分析支持向量机
脑卒中后抑郁症静息脑电信号非线性特征提取与分析被引量:7
2013年
目的探究脑卒中后抑郁症(PSD)患者脑电信号的非线性动力学特征。方法利用样本熵和LZC复杂度分析的方法对10例健康人和14例脑卒中患者(4例脑卒中后无抑郁症患者及10例脑卒中后抑郁症患者)静息状态下的脑电信号进行复杂度分析。结果除个别导联(FP1,P4)以外,脑卒中患者组脑电信号的样本熵和LZC复杂度值均小于健康对照组;对于所有导联,脑卒中后抑郁症组脑电信号的样本熵和LZC复杂度值均小于脑卒中后无抑郁症组,并且在导联01、02处2参数的差异具有统计学意义(P〈0.05)。结论脑卒中患者相对于健康人表现同步脑电活动增加,且简单有序,其复杂度有所下降;而脑卒中后抑郁症与非抑郁症患者比较前者复杂度下降更为明显,在大脑枕叶尤为突出。本研究有望为脑卒中后抑郁症的辅助诊断提供帮助。
孙长城王春方王勇军杜金刚徐强綦宏志万柏坤明东
关键词:脑卒中后抑郁症脑电信号
Cross-task emotion recognition using EEG measures: first step towards practical application被引量:2
2014年
Electroencephalographic(EEG)-based emotion recognition has received increasing attention in the field of human-computer interaction(HCI)recently,there however remains a number of challenges in building a generalized emotion recognition model,one of which includes the difficulty of an EEG-based emotion classifier trained on a specific task to handle other tasks.Lit-tle attention has been paid to this issue.The current study is to determine the feasibility of coping with this challenge using feature selection.12 healthy volunteers were emotionally elicited when conducting picture induced and videoinduced tasks.Firstly,support vector machine(SVM)classifier was examined under within-task conditions(trained and tested on the same task)and cross-task conditions(trained on one task and tested on another task)for pictureinduced and videoinduced tasks.The within-task classification performed fairly well(classification accuracy:51.6%for picture task and 94.4%for video task).Cross-task classification,however,deteriorated to low levels(around 44%).Trained and tested with the most robust feature subset selected by SVM-recursive feature elimination(RFE),the performance of cross-task classifier was significantly improved to above 68%.These results suggest that cross-task emotion recognition is feasible with proper methods and bring EEG-based emotion recognition models closer to being able to discriminate emotion states for any tasks.
LIU ShuangMENG JiayuanZHAO XinYANG JiajiaHE FengQI HongzhiZHOU PengHU YongMING Dong
共1页<1>
聚类工具0