Dust emissions from smelters, as a major contributor to heavy metal contamination in soils, could severely influence soil quality. Downwind surface soils within 1.5 km of a zinc smelter, which was active for 10 years but ceased in 2000, in Magu Town, Cuizhou Province, China were selected to examine Pb, Zn, and Cd concentrations and their fractionation along a distance gradient from a zinc smelter, and to study the possible effects of Pb, Zn, and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter. Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg^-1), Pb (95.6 mg kg^-1), and Cd (5.98 mg kg^-1) with low ratios of Zn/Cd (59.1-115) and Pb/Cd (12.4-23.4). Composite pollution indices (CPIs) of surface soils (2.52-15.2) were 3 to 13 times higher than the reference soils. In metal accumulated soils, exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn, Pb, and Cd. The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209). A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1-438 μg C g^-1) than in reference soils (497 μg C g^-1), and a negative correlation (P 〈 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed. Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils, and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R = -0.773, P 〈 0.01). Consequently, dust deposited Pb, Zn, and Cd in soils from zinc smelting were readily mobilized, and were detrimental to soil quality mainly in respect of microbial biomass .
YANG Yuan-Gen2, JIN Zhi-Sheng, BI Xiang-Yang, LI Fei-Li, SUN Li, LIU Jie and FU Zhi-You Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)