Mouse NANOG plays a critical role in maintaining self-renewal and pluripotency of embryonic stem cells.Yet,the precise mechanism of how mNANOG functions is still less known.Here,we report that mouse NANOG has two nuclear localization signals(NLS,RKQKMR and RMKCKR) which are responsible for the nuclear localization and transcriptional activity in the conserved homeobox domain.NLS mutants of mouse NANOG generate 3 mutants that are localized throughout the cells and lose the transactivation function.We further prove that all three NLS mutants may interact with the wild-type mouse NANOG like NANOG dimerization itself and inhibit the wild-type mouse NANOG activity,acting as dominant negative mutants.The NLS mutants of mouse NANOG may also inhibit activity of oct4 promoter in pluripotent cells,indicating that the NLS mutants can affect the endogenous mouse NANOG function in vivo.These data suggest that the NLS mutants of mouse NANOG may be used as a tool to regulate NANOG activity in pluripotent cells.
Nanog is a transcription factor identified by its ability to maintain the self-renewal of ES cells in the absence of leukemia inhibitory factor (LIF). Nanog protein contains an N-terminal domain (ND), a DNA-binding homeobox domain (HD) and a C-terminal domain (CD). We previously reported that the CD in Nanog is a transcriptional activation domain essential for the in vivo function of Nanog. Here we demonstrated that the ND in Nanog is also functionally important. Deletion of the ND reduces the transcriptional activity of Nanog on either artificial reporters or native Nanog promoters. This truncated Nanog is also less effective in regulating the endogenous Nanog target genes. Furthermore, the ND truncation disrupted the ability of Nanog to maintain ES cell self-renewal as well. We found that the ND is not required for the nuclear localization of Nanog. These results suggest that the regulation of endogenous pluripotent genes such as oct3/4 and rex-1 is required for the in vivo function of Nanog.
Previous research has shown that mouse embryonic stem (ES) cells can be induced to form neural cells in adherent monocultures.In this study,pluripotent stem (iPS) C5 cells derived from meningeal membranes were converted successfully into neural-like cells using the same protocol generally used for ES cells.Meningeal-iPS C5 cells were induced to express neural markers Sox1,Sox3,Pax6,Nestin and Tuj1 and to reduce the expression of ES markers Oct4 and Nanog during neural differentiation,and can be differentiated into Pax6 and Nestin positive neural progenitors,and further into neuronal,astrocytic,and oligodendrocytic cells.In vitro differentiation of iPS cells into patient-specific neural cells could serve as a model to study mechanisms of genetic diseases and develop promising candidates for therapeutic applications in dysfunctional or aging neural tissues.Meningeal cells express a high level of the embryonic master regulator Sox2,allowing them to be reprogrammed into iPS cells more easily than other somatic cells.
Objective: Human embryonic stem cells (hESCs) have recently been reported as an unlimited source of mesenchymal stem cells (MSCs).The present study not only provides an identical and clinically compliant MSC source derived from hESCs (hESC-MSCs),but also describes the immunomodulative effects of hESC-MSCs in vitro and in vivo for a carbon tetrachloride (CCl4)-induced liver inflammation model.Methods: Undifferentiated hESCs were treated with Rho-associated kinase (ROCK) inhibitor and induced to fibroblast-looking cells.These cells were tested for their surface markers and multilineage differentiation capability.Further more,we analyzed their immune characteristics by mixed lymphocyte reactions (MLRs) and animal experiments.Results: hESC-MSCs show a homogenous fibroblastic morphology that resembles bone marrow-derived MSCs (BM-MSCs).The cell markers and differentiation potential of hESC-MSCs are also similar to those of BM-MSCs.Unlike their original cells,hESC-MSCs possess poor immunogenicity and can survive and be engrafted into a xenogenic immunocompetent environment.Conclusions: The hESC-MSCs demonstrate strong inhibitory effects on lymphocyte proliferation in vitro and anti-inflammatory infiltration properties in vivo.This study offers information essential to the applications of hESC-MSC-based therapies and evidence for the therapeutic mechanisms of action.