Self-assembly of latex particles is of great importance for fabricating various functional colloidal crystals. In this paper, we review recent research on the self-assembly of latex particles for colloidal crystals, covering the assembly forces and various assembly approaches of latex particles, including self-assembly by gravity sedimentation, vertical deposition, physical confinement, electric field, and magnetic field. Furthermore, some simple methods for assembling latex particles such as spin coating, spray coating, and printing are also summarized.
Two novel zinc Schiff-base complexes, bis-(N-(2-hydroxybenzidene)-p-aminodimethylaniline)zinc(II) (2) and bis-(N-(2-hydroxy-1-naphthidene)-p-aminodimethylaniline)zinc(II) (4) were designed and synthesized. Both the complexes exhibit good solubility in organic solvents and excellent thermal stabilities. A single crystal of 2 was grown and its crystalline structure was determined from X-ray diffraction data. Analysis of the electronic structures of both the zinc complexes calculated by density functional theory reveals a localization of orbital. The UV-Vis absorption and photoluminescence profiles of 4 in thin film are similar to those of 2, but the emission for 4 is red-shifted compared to 2. Three-layered devices with a configuration of ITO/NPB/2/Alq 3 /LiF/Al and ITO/NPB/4/Alq 3 /LiF/Al show a yellow and red emission, respectively.
Supramolecular self-assembly,an important strategy in nanotechnology,has been widely studied in the past two decades.In this review,we have introduced the recent progress on construction of two-dimensional(2D)nanostructures by host-guest supramolecular chemistry at solid-liquid interface,and the interactions between the host assembly and the guest molecules are the major concerns.At first,the hydrogen bonds connected hybrid structures are discussed.And then we have paid a close attention on the surface-confined condensation reactions that has flourished recently in direct preparing novel nanostructures with increasing structural complexity.In the end,the cavity confinement of the 2D supramolecular host-guest architectures has been studied.On the basis of the above-mentioned interactions,a group of functional hybrid structures have been prepared.Notably,scanning tunneling microscopy(STM),a unique technique to probe the surface morphology and information at the single molecule level,has been used to probe the formed structures on highly oriented pyrolytic graphite(HOPG)surface.