Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy-preserving data publishing techniques concentrate on microdata with multiple categorical sensitive attributes or only one numerical sensitive attribute. However, many real-world applications can contain multiple numerical sensitive attributes. Directly applying the existing privacy-preserving techniques for single-numerical-sensitive-attribute and multiple-categorical-sensitive- attributes often causes unexpected disclosure of private information. These techniques are particularly prone to the proximity breach, which is a privacy threat specific to numerical sensitive attributes in data publication, in this paper, we propose a privacy-preserving data publishing method, namely MNSACM, which uses the ideas of clustering and Multi-Sensitive Bucketization (MSB) to publish microdata with multiple numerical sensitive attributes. We use an example to show the effectiveness of this method in privacy protection when using multiple numerical sensitive attributes.
We consider the problem of packing d-dimensional cubes into the minimum number of 2-space bounded unit cubes. Given a sequence of items, each of which is a d-dimensional (d ≥ 3) hypercube with side length not greater than 1 and an infinite number of d-dimensional (d ≥ 3) hypercube bins with unit length on each side, we want to pack all of the items in the sequence into the minimum number of bins. The constraint is that only two bins are active at anytime during the packing process. Each item should be orthogonally packed without overlapping other items. Items are given in an online manner without the knowledge of or information about the subsequent items. We extend the technique of brick partitioning for square packing and obtain two results: a three-dimensional box and d-dimensional hyperbox partitioning schemes for cube and hypercube packing, respectively. We design 32 5.43-competitive and 32/21·2d-competitive algorithms for cube and hypercube packing, respectively. To the best of our knowledge these are the first known results on 2-space bounded cube and hypercube packing.