Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then principal components are extracted through reconstructing multi effects. Moreover, combining with the optimal estimation theory, the method of singular value diagnosis in dam safety monitoring effect values is proposed. After dam monitoring information matrix is obtained, single effect state estimation matrix and multi effect fusion estimation matrix are constructed to make diagnosis on singular values to reduce false alarm rate. And the diagnosis index is calculated by PCA. These methods have already been applied to an actual project and the result shows the ability of the monitoring effect reflecting dam evolution behavior is improved as dam safety monitoring effect fusion estimation can take accurate identification on singular values and achieve data reduction, filter out noise and lower false alarm rate effectively.
The focus of this paper is the ill-conditioned problems in the dam safety monitoring model. The reasons to give rise to the ill-conditioned problems in statistical models,deterministic models and hybrid models are analyzed in detail,and the criterions for ill-conditioned models are investigated. It is shown that safety monitoring models are not easy to be ill-conditioned if the number of influence factors is less than seven. Moreover,the models have a high accuracy and can meet the engineering requirements. Another frequently encountered problem in establishing a safety monitoring model is the existence of inflection points,which are often present in the mathematical model for the hydraulic components in deterministic models and hybrid models. The conditions for inflection points are studied and their treatments are suggested. Numerical example indicates that the treatments proposed in this paper are effective in removing the ill-conditioned problems.
More than 87000 dams have been built in China,and about one third of them are risky projects.A number of high and ultra-high dams are being constructed in China's western region.The current dam construction practice tends to focus on socio-economic benefits and neglect the environment and ecology.Furthermore,periodic examinations are intended to ensure the structural safety of dams.This paper proposes a general evaluation principle for dam service.This principle stipulates that dam projects should have maximum socio-economic benefits and minimum negative effects on the environment and ecology.To satisfy the general principle of mutual harmony,socio-economic benefits,dam safety,environment,and ecology are analyzed,and the evaluation methods for dam service status are discussed.Then,a fusion algorithm of interlayer assessment is proposed on the basis of evidence theory and the fuzzy comprehensive analysis method.Finally,a comprehensive evaluation model is established.Example analysis shows that the proposed theories and methods can fulfill scientific assessment of the service status of dams.