In order to understand the recycling and emission processes of hydrogen atoms in HT 7, spectral profiles of the Dα(Hα) line emitted in front of the limiter have been observed with a high-resolution spectrometer and simulated by using the neutral particle transport code DEGAS 2. The results show that four processes are necessary to interpret the Dα(Hα) line shape: 1) atom desorption, 2) molecular dissociation, 3) particle reflection, and 4) charge-exchange. The products of the first two processes are cold atoms which emit photons near the peak of Dα(Hα) line shape, and those from the last two are warm atoms contributing to the blue side of the spectrum. For a typical ohmic discharge (shot 68520 ne(0) ≈ 3× 10^19 m^-3. these components contribute 32%, 15%, 32% and 21%, respectively. Dα(Hα) line shapes under different plasma parameters are also discussed in this paper.
A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density. In lower hybrid power and phase scanning experiments; there is no appreciable change in the photon temperature. The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation. Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population, synergy between the fast electron and the loop voltage and the Coulomb slowing down.
Ion's toroidal velocity, vt, in both the outermost 4 cm of the confined region and the scrap-off layer of Ohmic L-mode plasmas in EAST was measured using Mach probes. At about 1 cm inside the separatrix a local minimum in vt was observed, from which a cocurrent rotation increased both inwards and outwards. The radial width of the vt dip was 1 cm to 2 cm, and both the density and electron temperature profiles exhibited steep gradients at this dip position. It was observed in both divertor and limiter configurations. To find out its origin, the toroidal torques induced by neutral friction, neoclassical viscosity, collisional perpendicular shear viscosity, ion orbit loss and turbulent Reynolds stress were estimated using the measured parameters. Our results indicate that in this particular parameter regime the neutral friction was the dominant damping force. The calculated cocurrent toroidal torque by the neoclassical viscosity dominates over those from the collisional perpendicular shear viscosity, ion orbit loss and turbulent Reynolds stress. These results are potentially important for the understanding of boundary conditions for the intrinsic toroidal momentum in tokamak plasmas.
Plasmas with vertically elongated cross-sections tend to be unstable to an axis-symmetric instability. This paper studies the magnetohydrodynamic equilibria in elongated plasmas after failure of vertical feedback control by using magnetic data for EAST device. Vertical forces on the vessel due to the induced polodial and toroidal currents are evaluated. The maximum force of the Fzpol in vertical displacement events for EAST designed parameters is given.
Intermittent convective transport at the edge and in the scrape-off layer (SOL) of EAST was investigated by using fast reciprocating Langmuir probe. Holes, as part of plasma structures, were detected for the first time inside the shear layer. The amplitude probability distribution function of the turbulence is strongly skewed, with positive skewed events ("blobs") prevailing in the SOL region and negative skewed events ("holes") dominant inside the shear layer. The statistical properties coincide with previous observations from JET. The generation mechanism of blobs and holes is also discussed. In addition burst structure and dynamics character of them are also presented.
If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall fiN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.
As the power available in the initial phase of the ITER operation will be limited, accessing the high confinement mode (H-mode) with low heating power will be a critical issue. In the recent experiment on EAST, the H-mode was obtained for the first time with lower hybrid current drive (LHCD) wave only. Reciprocating Langmuir probe measurements at the outer midplane showed that the electron density ne and electron tempel:ature Te in the scrape-off layer (SOL) were significantly reduced in the ELM-free phase, resulting in the increase of lower-hybrid wave (LHW) reflection. It was found that the power loss Ploss was comparable during the L-H transition, by comparing the adjacent L-mode and H-mode discharge. The Da emission, Te and ne decreased rapidly in the time scale of about 1 ms, and the radial electric field Er turned positive in this process near the last closed flux surface. Multiple L-H-L transitions were observed during a single shot when the applied LHW power was marginal to the threshold. The floating potential (Vf) had negative spikes corresponding with the Da signal, and Er oscillation evolved into several intermittent negative spikes just before the L-H transition. In some shots, dithering was observed just before the L-H transition.
Growth rates of the axisymmetric mode in elongated plasmas in the experimental advanced superconducting tokamak (EAST) are measured with zero feedback gains and then compared with numerically calculated growth rates for the reconstructed shapes. The comparison is made after loss of vertical position control. The open-loop growth rates were scanned with the number of vessel eigenmodes, which up to 20 is enough to make the growth rates settled. The agreement between the growth rates measured experimentally and the growth rates determined numerically is good. The results show that a linear RZIP model is essentially good enough for the vertical position feedback control.
Reconstruction of experimental axisymmetric equilibria is an important part of tokamak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier expansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign.
The effect of passive plates on vertical displacement control in the EAST tokamak is investigated by open loop experiments and numerical simulations based on a rigid displacement model. The experiments and simulations indicate that the vertical instability growth rate is reduced by a factor of about 2 in the presence of the passive plates, where the adjacent segments are not connected to each other. The simulations also show that the vertical instability growth rate is reduced by a factor of about 10 if all adjacent segments on each passive plate loop are connected to each other. The operational window is greatly enlarged with the passive plates.