您的位置: 专家智库 > >

国家自然科学基金(11001231)

作品数:3 被引量:6H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 1篇NEAR
  • 1篇OPERAT...
  • 1篇OPERAT...
  • 1篇PERTUR...
  • 1篇PERTUR...
  • 1篇SCHAUD...
  • 1篇SPACE
  • 1篇THEORE...
  • 1篇BANACH...
  • 1篇HILBER...
  • 1篇HILBER...
  • 1篇HILBER...
  • 1篇INJECT...
  • 1篇LINEAR
  • 1篇NORM
  • 1篇ISOMET...
  • 1篇FRAMES
  • 1篇T-STAB...

传媒

  • 3篇Acta M...

年份

  • 1篇2014
  • 1篇2013
  • 1篇2012
3 条 记 录,以下是 1-3
排序方式:
On Universally Left-stability of ε-Isometry被引量:6
2013年
Let X, Y be two real Banach spaces and ε≥0. A map f : X → Y is said to be a standard ε-isometry if│││f/(x) - f(y)││ - ]ix - Y││x-y││ ε for all x,y C X and with f(O) = O. We say that a pair of Banach spaces (X, Y) is stable if there exists γ〉 0 such that, for every such ε and every standard v-isometry f : X → Y, there is a bounded linear operator T : L(f) → f(X) → X so that ││Tf(x) - x││ ≤γε for all x E X. X(Y) is said to be universally left-stable if (X, Y) is always stable for every Y(X). In this paper, we show that if a dual Banach space X is universally left-stable, then it is isometric to a complemented w*-closed subspace of ∞ (1) for some set F, hence, an injective space; and that a Banach space is universally left-stable if and only if it is a cardinality injective space; and universally left-stability spaces are invariant.
Ling Xin BAOLi Xin CHENGQing Jin CHENGDuan Xu DAI
A Quantitative Version of the Bishop–Phelps Theorem for Operators in Hilbert Spaces
2012年
In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 〈 s 〈 1/2. Then for every bounded linear operator T : H → H and x0 ∈ H with ||T|| = 1 = ||xo|| such that ||Txo|| 〉 1-6, there exist xε ∈ H and a bounded linear operator S : H → H with ||S|| = 1 = ||xε|| such that ||Sxε||=1, ||x-ε0||≤√2ε+4√2ε, ||S-T||≤√2ε.
Li Xin CHENGYun Bai DONG
Perturbations of Frames
2014年
In this paper, we give some sufficient conditions under which perturbations preserve Hilbert frames and near-Riesz bases. Similar results are also extended to frame sequences, Riesz sequences and Schauder frames. It is worth mentioning that some of our perturbation conditions are quite different from those used in the previous literatures on this topic.
Dong Yang CHENLei LiBen Tuo ZHENG
关键词:PERTURBATION
共1页<1>
聚类工具0