Let X, Y be two real Banach spaces and ε≥0. A map f : X → Y is said to be a standard ε-isometry if│││f/(x) - f(y)││ - ]ix - Y││x-y││ ε for all x,y C X and with f(O) = O. We say that a pair of Banach spaces (X, Y) is stable if there exists γ〉 0 such that, for every such ε and every standard v-isometry f : X → Y, there is a bounded linear operator T : L(f) → f(X) → X so that ││Tf(x) - x││ ≤γε for all x E X. X(Y) is said to be universally left-stable if (X, Y) is always stable for every Y(X). In this paper, we show that if a dual Banach space X is universally left-stable, then it is isometric to a complemented w*-closed subspace of ∞ (1) for some set F, hence, an injective space; and that a Banach space is universally left-stable if and only if it is a cardinality injective space; and universally left-stability spaces are invariant.
In this paper, with the help of spectral integral, we show a quantitative version of the Bishop-Phelps theorem for operators in complex Hilbert spaces. Precisely, let H be a complex Hilbert space and 0 〈 s 〈 1/2. Then for every bounded linear operator T : H → H and x0 ∈ H with ||T|| = 1 = ||xo|| such that ||Txo|| 〉 1-6, there exist xε ∈ H and a bounded linear operator S : H → H with ||S|| = 1 = ||xε|| such that ||Sxε||=1, ||x-ε0||≤√2ε+4√2ε, ||S-T||≤√2ε.
In this paper, we give some sufficient conditions under which perturbations preserve Hilbert frames and near-Riesz bases. Similar results are also extended to frame sequences, Riesz sequences and Schauder frames. It is worth mentioning that some of our perturbation conditions are quite different from those used in the previous literatures on this topic.