Cell–material interactions during early osseointegration of the bone–implant interface are critical and involve crosstalk between osteoblasts and osteoclasts.The surface properties of titanium implants also play a critical role in cell–material interactions.In this study,femtosecond laser treatment and sandblasting were used to alter the surface morphology,roughness and wettability of a titanium alloy.Osteoblasts and osteoclasts were then cultured on the resulting titanium alloy disks.Four disk groups were tested:a polished titanium alloy(pTi)control;a hydrophilic micro-dislocation titanium alloy(sandblasted Ti(STi));a hydrophobic nano-mastoid Ti alloy(femtosecond laser-treated Ti(FTi));and a hydrophilic hierarchical hybrid micro-/nanostructured Ti alloy[femtosecond laser-treated and sandblasted Ti(FSTi)].The titanium surface treated by the femtosecond laser and sandblasting showed higher biomineralization activity and lower cytotoxicity in simulated body fluid and lactate dehydrogenase assays.Compared to the control surface,the multifunctional titanium surface induced a better cellular response in terms of proliferation,differentiation,mineralization and collagen secretion.Further investigation of macrophage polarization revealed that increased anti-inflammatory factor secretion and decreased proinflammatory factor secretion occurred in the early response of macrophages.Based on the above results,the synergistic effect of the surface properties produced an excellent cellular response at the bone–implant interface,which was mainly reflected by the promotion of early ossteointegration andmacrophage polarization.
Yang LiuZhongying RuiWei ChengLicheng SongYunqiang XuRuixin LiXizheng Zhang
Oral squamous cell carcinoma is one of the most common malignant tumours in the oral and maxillofacial regions and is highly malignant and prone to recur despite the development of various effective treatments,including surgery and chemoradiotherapy.Actually,it is difficult to ensure the complete elimination of tumour cells,and maxillofacial bone defects caused by surgery are hard to heal by themselves.In addition,chemoradiotherapy can bring serious side-effects.Therefore,it is imperative to develop a postoperative therapy to kill residual squamous cancer cells and repair bone defects without any side-effects.Here,we prepared a 3D scaffold by a 3D printing technique and freeze-drying method,which contained collagen,silk and hydroxyapatite(CSH)and was functionalized with MXene nanosheets(M-CSH).The considerable photothermal effect with long-term stability can significantly kill squamous CAL-27 cancer cells in vitro and inhibit tumour growth in vivo,increasing the probability of the M-CSH scaffold being applied in the photothermal therapy of oral squamous cell carcinoma.Moreover,the cell proliferation-and osteogenic-related protein expression of mouse embryonic osteogenic precursors(MC3T3-E1)indicated excellent biocompatibility and osteogenic activity of M-CSH scaffolds.The good compression modulus(52.8362.25 kPa)and in vivo bone formation performance made it possible to be used as reconstructive materials for bone defects.This scaffold is likely promising in future tissue engineering,especially for the multifunctional treatment of maxillofacial tumours.
Fengji LiYanling YanYanan WangYaru FanHuiru ZouHan LiuRui LuoRuixin LiHao Liu