The Sulu (苏鲁)-Dabie (大别) orogen in East-Central China formed during the subduction and collision of the Yangtze block with the North China block in Early Mesozoic (240-225 Ma). Constraints on the nature and derivation of eclogites, which are a significant component of the orogen, can provide useful information about subduction-zone metamorphism and crust-mantle interaction. The U-Pb ages, Hf-isotope ratios and trace-element compositions of zircons in eclogites from the Jiangzhuang (蒋庄) (Jiangsu (江苏) Province) and Rongcheng (荣成) (Shandong (山东) Province) areas indicate that the protoliths of the eclogites derived from ultramafic-mafic complexes or mafic intrusion in the subducted continental lithosphere. The upper intercept age of 852±10 Ma and high tHf (up to 14.7) of the Neoproterozoic zircons in a Jiangzhuang sample indicate that the protoliths represent products of the Neoproterozoic addition of juvenile materials to the older (i.e., Paleo-Mesoproterozoic) continental crust. The zircon ages of eclogites from both localities mainly record the Triassic (230-220 Ma) metamorphism, consistent with the formation of the Sulu orogen in Early Mesozoic. The lower intercept age of 316±4 Ma in a Jiangzhuang sample suggests that thermal activity relating to the paleo- Tethyan in Late Carboniferous also affected the eclogitic protolith.
Zircon U-Pb age and Hf isotope, and major and trace element compositions were reported for granite at Quanyishang, which intruded into the Kongling complex in Yichang, Hubei Province. The results show that the Quanyishang granite is rich in silicon and alkalis but poor in calcium and magnesium, and displays enrichment in Ga, Y, Zr, Nb but depletion in Sr and Ba, exhibiting the post-orogenic A-type affinity. 90% zircons from the granite are concordant, and give a middle Paleoproterozoic magmatic crystallization age (mean 1854 Ma). Initial Hf isotope ratios (176Hf/177Hf)i of the middle Paleoproterozoic zircons range from 0.280863 to 0.281134 and they have negative εHf(t) values with a minimum of -26.3. These zircons give the depleted mantle model ages (TDM) of 2.9―3.3 Ga (mean 3.0 Ga), and the average crustal model ages (Tcrust) of 3.6―4.2 Ga (mean 3.8 Ga). A Mesoarchean grain with 207Pb/206Pb age of 2859 Ma has a slightly high TDM (3.4 Ga) but similar Tcrust (3.8 Ga) to the Paleoproterozoic zircons. All these data suggest that the source materials of the Quanyishang A-type granite are unusually old, at least ≥2.9 Ga (even Eoarchean). The event of crustal remelting, which resulted in the formation of the Quanyishang granite in the middle Paleoproterozoic, recorded the cratonization of the Yangtze conti- nent. The process may have relation to the extension and collapse of the deep crust with Archean ages, in response to the transition stage of the assembly and breakup of the Columbia supercontinent.