您的位置: 专家智库 > >

国家自然科学基金(61170020)

作品数:5 被引量:6H指数:2
相关作者:崔志明黄昊晶刘全刘纯平龚声蓉更多>>
相关机构:苏州大学广东水利电力职业技术学院佛罗里达大学更多>>
发文基金:国家自然科学基金苏州市科技计划项目(应用基础研究计划)江苏省自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 5篇自动化与计算...

主题

  • 1篇多相图像分割
  • 1篇虚拟机
  • 1篇视频
  • 1篇视频编码
  • 1篇视频传输
  • 1篇似然
  • 1篇图像
  • 1篇图像分割
  • 1篇图像分割方法
  • 1篇网络
  • 1篇相变
  • 1篇负载点
  • 1篇REINFO...
  • 1篇SEMANT...
  • 1篇SET
  • 1篇SINE
  • 1篇SPARSE
  • 1篇USING
  • 1篇AD
  • 1篇AD_HOC

机构

  • 3篇苏州大学
  • 1篇广东水利电力...
  • 1篇佛罗里达大学

作者

  • 2篇崔志明
  • 1篇黄昊晶
  • 1篇龚声蓉
  • 1篇刘纯平
  • 1篇王朝晖
  • 1篇刘全

传媒

  • 2篇Fronti...
  • 1篇计算机学报
  • 1篇计算机应用与...
  • 1篇无线通信

年份

  • 1篇2014
  • 1篇2013
  • 3篇2012
5 条 记 录,以下是 1-5
排序方式:
A parallel scheduling algorithm for reinforcement learning in large state space
2012年
The main challenge in the area of reinforcement learning is scaling up to larger and more complex problems. Aiming at the scaling problem of reinforcement learning, a scalable reinforcement learning method, DCS-SRL, is proposed on the basis of divide-and-conquer strategy, and its convergence is proved. In this method, the learning problem in large state space or continuous state space is decomposed into multiple smaller subproblems. Given a specific learning algorithm, each subproblem can be solved independently with limited available resources. In the end, component solutions can be recombined to obtain the desired result. To ad- dress the question of prioritizing subproblems in the scheduler, a weighted priority scheduling algorithm is proposed. This scheduling algorithm ensures that computation is focused on regions of the problem space which are expected to be maximally productive. To expedite the learning process, a new parallel method, called DCS-SPRL, is derived from combining DCS-SRL with a parallel scheduling architecture. In the DCS-SPRL method, the subproblems will be distributed among processors that have the capacity to work in parallel. The experimental results show that learning based on DCS-SPRL has fast convergence speed and good scalability.
Quan LIUXudong YANGLing JINGJin LIJiao LI
关键词:SCALABILITY
基于负载波动预测的虚拟机自主迁移启发式方法被引量:4
2014年
成熟的虚拟化技术使云计算软件架构可以灵活、高效、充分地管理和利用硬件资源。虚拟机迁移是实现动态资源管理的关键技术,也是保障云计算平台负载均衡和高可用的重要前提。提出一种基于虚拟机负载波动预测的启发式迁移方法。通过分析虚拟机负载波动平衡情况,设计启发式方法预测虚拟机的负载点和负载波浪的转势时间。实验数据表明,该方法有较强的自适应性,可有效改善虚拟机自主迁移的效率,达到辅助迁移虚拟机的目的。
黄昊晶崔志明
关键词:虚拟机负载点
基于相变和似然性的多相图像分割方法被引量:2
2012年
Sine-Sinc模型是一种基于材料科学中Modica-Mortola物理相变原理的多相图像分割方法.针对该模型分割结果不完全、易受噪声和亮度不均匀性影响的问题,提出了一个改进的Sine-Exp-Gauss多相图像分割模型.基于Sine-Sinc模型,Sine-Exp-Gauss模型用指数函数代替Sine-Sinc模型的Sinc函数,并从分段常数图像假设推广到高斯分布函数图像假设;模型偏微分方程的数值解采用凸函数分裂方法迭代,获得每个相的局部最优解,同时给出一种标准初始化方法使迭代过程易于收敛到理想局部极小值.与Sine-Sinc模型和偏差矫正模型相比,实验结果证明Sine-Exp-Gauss模型在噪声消除和自偏差矫正方面都更加鲁棒.
刘纯平CHENFu-HHa龚声蓉崔志明刘全
关键词:多相图像分割
Ad Hoc网络中的视频传输方法与技术综述
2012年
Ad Hoc网络由于拓扑变化以及节点的移动导致路径经常性中断,使得Ad Hoc网络信道误码率和传输丢包率高,这给视频传输带来了新的挑战。因此,研究适合Ad Hoc网络的视频编码和传输方法成为了当今一大热点。在结合Ad Hoc网络传输特性的基础上,从视频编码、传输和接收端同时入手,对目前Ad Hoc网络视频传输的研究现状和主要方法进行了系统的论述,并对适合Ad Hoc网络传输视频的新机制及其关键技术进行了展望。
王朝晖
关键词:ADHOC视频编码视频传输
Image categorization using a semantic hierarchy model with sparse set of salient regions
2013年
Image categorization in massive image database is an important problem. This paper proposes an approach for image categorization, using sparse set of salient semantic information and hierarchy semantic label tree (HSLT) model. First, to provide more critical image semantics, the proposed sparse set of salient regions only at the focuses of visual attention instead of the entire scene was formed by our proposed saliency detection model with incorporating low and high level feature and Shotton's semantic texton forests (STFs) method. Second, we also propose a new HSLT model in terms of the sparse regional semantic information to automatically build a semantic image hierarchy, which explicitly encodes a general to specific image relationship. And last, we archived image dataset using image hierarchical semantic, which is help to improve the performance of image organizing and browsing. Extension experimefital results showed that the use of semantic hierarchies as a hierarchical organizing frame- work provides a better image annotation and organization, improves the accuracy and reduces human's effort.
Chunping LIUYang ZHENGShengrong GONG
共1页<1>
聚类工具0