Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 171 Tm, we perform projected shell model(PSM) calculations to investigate structure of the ground band and other bands based on isomeric states. In addi- tion to the usual quadrupole-quadrupole force in the Hamiltonian, we employ the hexadecapole-hexadecapole(HH) interac- tion, in a self-consistent way with the hexadecapole deformation of the deformed basis. It is found that the known experi- mental data can be well described by the PSM calculation. The effect of the HH force on the quasiparticle isomeric states is discussed.
The N≈Z nuclei in the mass A^80 region has been researched because of an abundance of nuclear structure phenomena.The projected shell model(PSM)was adopted to investigate the structure of high spin state in proton-rich 74,76,78Kr isotopes including yrast spectra,moment of inertia,electric quadrupole transitions and the behavior of single particle.The calculated results are in good agreement with available data and the shape coexistence in low-spin is also discussed.