In this paper, a new simulation approach for solving the mixed train scheduling problem on the high-speed double-track rail line is presented. Based on the discrete-time movement model, we propose control strategies for mixed train movement with different speeds on a high-speed double-track rail line, including braking strategy, priority rule, travelling strategy, and departing rule. A new detailed algorithm is also presented based on the proposed control strategies for mixed train movement. Moreover, we analyze the dynamic properties of rail traffic flow on a high-speed rail line. Using our proposed method, we can effectively simulate the mixed train schedule on a rail line. The numerical results demonstrate that an appropriate decrease of the departure interval can enhance the capacity, and a suitable increase of the distance between two adjacent stations can enhance the average speed. Meanwhile, the capacity and the average speed will be increased by appropriately enhancing the ratio of faster train number to slower train number from 1.
In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.