A series of Er-Al-Co bulk metallic glasses (BMGs) have been prepared by the copper mold casting method. The glass forming ability and magnetocaloric effect (MCE) for these alloys have been investigated. The second-order magnetic transition from para-magnetic to ferromagnetic states takes place at about 9 K. These BMGs exhibit excellent MCE because of their large effective magneton number; Er56Al24Co20 BMG has a maximum entropy change and refrigeration capacity of 16.06 J kg-1 K-1 and 546 J kg-1,respectively,under the field of 50 kOe (10 kOe=795.775 kA/m) indicating that these BMGs are potential candidate magnetic materials for hydrogen liquefaction.
HUI XiDong XU ZhiYi WU Yuan CHEN XiaoHua LIU XiongJun LU ZhaoPing
A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coating thickness were investigated. It is found that the coating thickness increases with the increase in drawing velocity but decreases with the increase in coating temperature. A fluid mechanical model was developed to quantify the coating thickness under various processing conditions. By using this theoretical model, the coating thickness was calculated, and the calculated values are in good agreement with the experimental data.