Rheological tests for raw and conditioned activated sludge (AS) or anaerobic digested sludge (ADS) show that power-law relationships can be used to describe the evolution of several rheological parameters, i.e., limiting viscosity (η∞), yield stress (τy), cohesion energy of the sludge network (Ec), and storage modulus (G'), with total suspended solid (TSS) content in raw and conditioned sludge. A gel-like structure that behaves similar to weak-link flocs/aggregates was observed in AS and ADS. As derived from the double-logarithmic plots of G'-TSS content, the mass fractal dimensions of the raw and conditioned AS or ADS flocs/aggregates were 2.70 and 2.53 or 2.85 and 2.79, respectively. The theological tests also indicate that both polymer conditioning and increased TSS content led to improved elastic behavior, cohesion energy, and yield stress of the sludge network, as well as expanded the corresponding linear viscoelastic range. The porosity of AS or ADS flocs/aggregates will be improved by polymer conditioning.
The reversibility of the structure and dewaterability of broken anaerobic digested sludge(ADS)is important to ensure the efficiency of sludge treatment or management processes.This study investigated the effect of continuous strong shear(CSS)and multipulse shear(MPS)on the zeta potential,size(median size,d(50)),mass fractal dimension(DF),and capillary suction time(CST)of ADS aggregates.Moreover,the self-regrowth(SR)of broken ADS aggregates during slow mixing was also analyzed.The results show that raw ADS with d(50) of 56.5μm was insensitive to CSS–SR or MPS–SR,though the size slightly decreased after the breakage phase.For conditioned ADS with d(50) larger than 600μm,the breakage in small-scale surface erosion changed to large-scale fragmentation as the CSS strength increased.In most cases,after CSS or MPS,the broken ADS had a relatively more compact structure than before and d(50) is at least 200μm.The CST of the broken fragments from optimally dosed ADS increased,whereas that corresponding to overdosed ADS decreased.MPS treatment resulted in larger and more compact broken ADS fragments with a lower CST value than CSS.During the subsequent slow mixing,the broken ADS aggregates did not recover their charge,size,and dewaterability to the initial values before breakage.In addition,less than 15%self-regrowth in terms of percentage of the regrowth factor was observed in broken ADS after CSS at average velocity gradient no less than 1905.6 sec^(-1).
The composition and effects of solution conditions on the physicochemical properties of the stratification components of extracellular polymeric substances (EPS) in anaerobic digested sludge were determined. The total EPS in anaerobic digested sludge were extracted by the cation exchange resin method. Another EPS extraction method, the ceutrifugation and sonication technique was employed to stratify the EPS into three fractions: slime, loosely bound (LB)-EPS, and tightly bound (TB)-EPS from the outside to the inside of the anaerobic digested sludge. Proteins and polysaccharides were dispersed uniformly across the different EPS fractions, and humic-like substances were mainly partitioned in the slime, with TB-EPS second. Protein was the major constituent of the LB-EPS and TB-EPS, and the corresponding ratios ranged from 54.0% to 65.6%. The hydrophobic part in the EPS chemical components was primarily comprised of protein and DNA, while the hydrophilic part was mainly composed of polysaccharide. In the slime, the hydrophobic values of several EPS chemical components (protein, polysaccharide, humic-like substances and DNA) were all below 50%. The protein/polysaccharide ratio had a significant influence on the Zeta potentials and isoelectric point values of the EPS: the greater the protein/polysaccharide ratio of the EPS was, the greater the Zeta potential and the higher the isoelectric point value were. All Zeta potentials of the EPS showed a decreasing trend with increasing pH. The corresponding isoelectric point values (pH) were 2.8 for total EPS, 2.2 for slime, 2.7 for LB-EPS, and 2.6 for TB-EPS. As the ionic strength increased, the Zeta potentials sharply increased and then gradually became constant without charge reversal. In addition, as the temperature increased (〈 40℃), the apparent viscosity of the EPS decreased monotonically and then gradually became stable between 40 and 60℃.