In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .
本文研究了沙棘籽渣多糖(Polysaccharides from seed residue of Hippophae rhamnoide L.,PSH)对正常小鼠及实验性2型糖尿病大鼠血糖、血脂代谢的影响。以100、200和400 mg/kg剂量的PSH连续灌胃正常小鼠20d;以50和100 mg/kg剂量的PSH连续灌胃由烟酰胺联合链脲佐菌素诱导的类似2型糖尿病大鼠3周,测定血糖、糖基化血清蛋白、血清胰岛素、血清总胆固醇、甘油三酯及肝糖原含量。结果显示:PSH对正常小鼠的血糖和血脂代谢没有明显影响;但能明显降低2型糖尿病大鼠的血清葡萄糖、总胆固醇和糖基化血清蛋白水平,同时显著增加糖尿病大鼠的血清胰岛素含量。上述结果表明:PSH在实验性2型糖尿病大鼠模型上具有降血糖和降胆固醇的活性。