A new method to prepare polysaccharide-coating type chiral stationary phases (CSPs) was developed in this work. As a typical example, naked silica gel was coated by cellulose, which was then derivatized with 3,5-dimethylbenzoyl chloride to afford cellulose tris(3,5-dimethylbenzoate)-silica gel (CTDBS) complex. The silanols on CTDBS were end-capped with 3- aminopropyltriethoxysilane to obtain CSP 1. The amino groups on CSP 1 were further end-capped with 3,5-dimethylbenzoyl chloride to give CSP 2. The silanols on CTDBS were end-capped with methyltrimethoxysilane to yield CSP 3. CSPs 1-3 were characterized by FTIR, solid-state 13C-NMR and elemental analysis. The enantioseparation abilities of CSPs 1-3 were evaluated with structurally various chiral analytes. The enantioseparation results demonstrated that the end-capping moieties on CSPs 1 and 2 significantly affected enantioseparation. In addition, the effect of the structures of chiral analytes and end- capping moieties on the retention factors and the resolutions was discussed.
A new way to prepare cellulose-type chiral stationary phases (CSPs) has been established in the present work.Cellulose microspheres with a volume-average diameter of 11.5 m were prepared by an emulsion-solidification method.Three new CSPs were obtained by crosslinking the cellulose microspheres with terephthaloyl chloride (TPC),and then modifying the crosslinked microspheres with 4-methylbenzoyl chloride,3,5-dimethylbenzoyl chloride and 3,5-dichlorobenzoyl chloride,respectively.The microspheres and the CSPs were characterized by FT-IR,element analysis and scanning electronic microscopy (SEM).The chiral recognition ability of the CSPs was evaluated with high-performance liquid chromatography (HPLC).The chromatographic results demonstrate that the CSP prepared from 3,5-dichlorobenzoyl chloride possesses better chiral recognition ability compared with two other CSPs.
JIN FenfenZHANG JuanCHEN WeiFAN QingchunBAI Zhengwu
Two chiral selectors were synthesized from tartaric acid. The selectors were simultaneously immobilized on 3-aminopropyl silica gel to obtain a new biselector chiral stationary phase (CSP) in order to determine the influence of selector structure of biselector CSPs on the chiral recognition capability. For comparison, the single-selector CSP was also prepared. The biselector CSP shows an improved overall chiral recognition capability in comparison with the single-selector CSP. During the enantioseparation, temporary diastereoisomers are likely formed by complexation between a chiral analyte and the two selectors on the biselector CSP. The functional groups in the two selectors are complementary in electronic effect and/or in steric hindrance for the chiral recognition.