Heavy use of chemical fertilizer causes increasing soil and environmental crisis, and the use of organic fertilizer increases obvious in recent years. In this study,mineral organic fertilizer(MOF) and compound fertilizer(CF) were applied in amaranth culture to explore the effects of these two kinds of fertilizers on soil quality and the potential function for CO_2 fixation. Some soil parameters were tested, e.g. p H value, organic carbon content, microbial biomass, urease activity, and available potassium content. In addition, some parameters of soil infiltration water were also determined, such as p H and HCO_3^- concentration. Experimental results showed that MOF improved soil quality and amaranth biomass and increased possible soil carbon sink.On the contrary, the utilization of CF worsened soil quality and made the soil acidize. These results suggested that MOF can partially replace CF to improve plant growth, soil quality and possible CO_2 sink.
To further understand the roles of carbonate and silicate rocks in regulating the atmosphere/soil CO_2level,the flux of CO_2 consumed by the chemical weathering of silicate and carbonate rocks was determined from the elemental change in soil profiles.Results showed that the chemical weathering of carbonate rocks mainly occurred at the rock-regolith interface,and that the further weathering of the residua soil on the carbonate rocks was similar to that of the granite profile.Chemical weathering of the silicate rocks occurred through the whole profiles.Therefore,CO_2 consumed per volume by the silicate profiles[M_(sr)(CO_2)]and the residues on carbonate rocks[M_(cr)(CO2)]were calculated based on the elemental weathering gradients.CO_2 consumed by carbonate protolith[M_(cp)(CO_2)]was calculated from the elemental change at the rock-regolith interface.The M_(sr)(CO_2) were about tens to thousands orders of magnitude greater than M_(cr)(CO_2).Even so,this demonstrated that the residues on carbonate rocks could be a sink of CO2_ on long-term scales.The M_(cp)(CO_2) was about four times larger than M_(sr)(CO_2),which demonstrated that carbonate rocks played a more important role in regulating the CO_2 level than the silicate rocks did during the pedogenic process of the profiles.
The weathering of carbonate rocks by biological soil crusts (BSC) in karst areas is very common. It is helpful to understand the weathering mechanisms and processes for avoiding karst rock-desertification. The weathering of carbonate rocks by BSC in karst areas, namely the expansion, contraction and curl resulting from environmental wetting-drying cycles, was investigated and ana- lyzed in this paper. The bulk density, area and thickness of BSC were determined and the weathering amount of limestone and dolomite per unit area of BSC was calculated as 3 700 and 3 400 g·m-2; the amount of biomass on the surface of limestone and dolomite was calculated as 1 146 and 1 301 g·m-2, respectively. Such an increased weathering amount was not only the result of chemical and physical weathering of BSC on carbonate rocks, but also the attachment and cementation of BSC to clay particles, dust-fall, sand particles, solid particles brought by strong air currents, wind and other factors in the surrounding environment, which may also be related to the special environment and the special time period. Based on the results obtained, a weathering mode of BSC is studied, and the mechanisms of weathering by BSC are discussed. In conclusion, we suggest that the mechanical force exerted by the expansion and constriction of gelatinous and mucilaginous substances through wetting and drying of BSC play a significant role in the physical weathering process of the carbonate substrates.
1 Introduction Global climate change is one of the greatest challenges facing humankind in the 21st century.Studying,and utilising,the carbon sink caused by the weathering of silicate minerals has been a key research focus for
The karst mountain areas of Southwest China contain barren farmland soils and suffer from nutritional and water deficiencies that affect crop productivity. Hence,it is imperative to apply suitable fertilizers to restore soil fertility and maintain crop yield. The aim of this study is to investigate the effects of mineral-organic fertilizer(MOF)made of potassic rock and organic waste on the growth of crops. For this purpose, green Chinese cabbage grown using three different fertilization methods including MOF,inorganic fertilizer(IF), and a control was evaluated. We determined soil water content, agronomic characteristics,and biomass of green Chinese cabbage in different treatments. Furthermore, surface runoff from the pot experiments and soil leachate from pot experiments were collected to determine water temperature, pH, and cation and anion concentrations. The results demonstrate thatMOF can improve the soil water-holding capacity of soil,and the basic agronomic characteristics of the cabbage treated with MOF were superior to those with IF. Using MOF can promote the increase in cabbage biomass.Additionally, the concentration of inorganic carbon(largely in the form of HCO_3^-) in surface runoff water treated by MOF was higher than the other treatments, establishing carbon sequestration potential. This work provides a novel and environmentally friendly fertilization pattern in karst areas, which will improve crop yield and also increase the carbon sequestration potential of crops.
Qibiao SunYulong RuanPing ChenShijie WangXiuming LiuBin Lian