Whitney's 2-switching theorem states that any two embeddings of a 2-connected planar graph in S2 can be connected via a sequence of simple operations, named 2-switching. In this paper, we obtain two operations on planar graphs from the view point of knot theory, which we will term "twisting" and "2-switching" respectively. With the twisting operation, we give a pure geometrical proof of Whitney's 2-switching theorem. As an application, we obtain some relationships between two knots which correspond to the same signed planar graph. Besides, we also give a necessary and sufficient condition to test whether a pair of reduced alternating diagrams are mutants of each other by their signed planar graphs.
In a recent work of Ayaka Shimizu, she studied an operation named region crossing change on link diagrams, which was proposed by Kishimoto, and showed that a region crossing change is an unknotting operation for knot diagrams. In this paper, we prove that the region crossing change on a 2-component link diagram is an unknotting operation if and only if the linking number of the diagram is even. Besides, we define an incidence matrix of a link diagram via its signed planar graph and its dual graph. By studying the relation between region crossing change and incidence matrix, we prove that a signed planar graph represents an n-component link diagram if and only if the rank of the associated incidence matrix equals c n + 1, where c denotes the size of the graph.