Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understand- ing the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.
Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical measurements reveal that an activation behavior is exhibited in the anodes. The specific capacity of the A173Si25Cr2 anodes can reach a maximum of 1119 mA.h/g and maintain at 586 mA·hg after 30 cycles. A more stable cycle performance is shown and a capacity loss is only 24% over 30 cycles for Al71Si25Cr4. The intermetallic compounds with Li cannot be detected in the lithiated anodes. After the ribbons were annealed, the specific capacities become much lower due to the formation of inert Al13SiaCr4, and an A1Li phase can be tested in the lithiated anodes. The Cr dissolved in the non-equilibrium alloys causes low lithiation activity and strong structure stability, which could be the main reason of the activation and a restriction of structure evolution.