We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
P This paper studies how phase synchronization in complex networks depends on random shortcuts, using the uous chaotic Chua system as the nodes of the networks. It is found that for a given coupling strength when the number of random shortcuts is greater than a threshold the phase synchronization is induced. Phase synchronization becomes evident and reaches its maximum as the number of random shortcuts is further increased. These phenomena imply that random shortcuts can induce and enhance the phase synchronization in complex Chua systems. Furthermore, the paper also investigates the effects of the coupling strength and it is found that stronger coupling makes it easier to obtain the complete phase synchronization.
An adaptive synchronization control method is proposed for chaotic permanent magnet synchronous motors based on the property of a passive system. We prove that the controller makes the synchronization error system between the driving and the response systems not only passive but also asymptotically stable. The simulation results show that the proposed method is effective and robust against uncertainties in the systemic parameters.