A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With iteration methods, the local existence of the solutions is obtained. Using the method of a priori estimates, the global existence of the solution is proved.
Zakharov equations have a fairly abundant physical background. In this paper, the existence of the weak global solution for quantum Zakharov equations for the plasmas model is obtained by means of the Arzela-Ascoli theorem, Faedo-Galerkin methods, and compactness property.