In this paper,we propose a derivative-free trust region algorithm for constrained minimization problems with separable structure,where derivatives of the objective function are not available and cannot be directly approximated.At each iteration,we construct a quadratic interpolation model of the objective function around the current iterate.The new iterates are generated by minimizing the augmented Lagrangian function of this model over the trust region.The filter technique is used to ensure the feasibility and optimality of the iterative sequence.Global convergence of the proposed algorithm is proved under some suitable assumptions.
Owing to its efficiency in solving some types of large-scale separable optimization problems with linear constraints, the convergence rate of the alternating direction method of multipliers(ADMM for short) has recently attracted significant attention. In this paper, we consider the generalized ADMM(G-ADMM), which incorporates an acceleration factor and is more efficient. Instead of using a solution measure that depends on a bounded set and cannot be easily estimated, we propose using the original ?-optimal solution measure, under which we prove that the G-ADMM converges at a rate of O(1/t). The new bound depends on the penalty parameter and the distance between the initial point and the solution set, which is more reasonable than the previous bound.