FeAs^- single layer is tested as a simple model for LaFeAsO and BaFe2As2 based on firstprinciples calculations using generalized gradient approximation (GGA) and GGA+U. The calculated single-layer geometric and electronic structures are inconsistent with that of bulk materials. The bulk collinear antiferromagnetic ground state failed to be obtained in the FeAs^- single layer. The monotonous behavior of the Fe-As distance in z direction upon electron or hole doping is also in contrast with bulk materials. The results indicate that, in LaFeAsO and BaFe2As2, interactions between FeAs layer and other layers beyond simple charge doping are important, and a single FeAs layer may not represent a good model for Fe based superconducting materials.
Nearly free electron (NFE) state has been widely studied in low dimensional systems. Based on first-principles calculations, we identify two types of NFE states in graphane nanoribbon superlattice, similar to those of graphene nanoribbons and boron nitride nanoribbons. Effect of electron doping on the NFE states in graphane nanoribbon superlattice has been studied, and it is possible to open a vacuum transport channel via electron doping.
Wurzite ZnS:Mn nanorods are synthesized via a solvothermal method by using ethylenediamine and water as mixed solvent.The diameters of the nanorods increase and the lengths decrease with the Mn concentration.High resolution transmission electron microscopic images illustrate that a few cubic ZnS:Mn nanoparticles arise along with hexagonal nanorods on high Mn concentration.The samples set off yellow-orange emission at 590 nm,characteristic of 4 T→ 6 A 1 transition of Mn 2+ at T d symmetry in ZnS.Electron spin resonance spectrum of the nanorods shows that high Mn concentrations produce a broad envelope,whereas six-line hyperfine appears for lower Mn concentrations.These results together with the magnetization curves indicate that all the ZnS:Mn samples are paramagnetic even down to 4 K,which suggests that the ZnS:Mn is not suitable for dilute magnetic semiconductor.
With density functional theory, the mechanism of water-enhanced CO oxidation on oxygen pre-covered Au (111) surface is theoretically studied. First, water is activated by the pre-covered oxygen atom and dissociates to OHads group. Then, OHads reacts with COads to form chemisorbed HOCOads. Finally, with the aid of water, HOCOads dissociates to CO2. The whole process can be described as 1/2H2Oads + H2Oads + 1/2Oads+ COads→H3Oads + CO2, gas. One CO2 is formed with only 1/2 pre-covered oxygen atom. That is why more CO2 is observed when water is present on oxygen pre-covered Au (111) surface. Activation energy of each elementary step is low enough to allow the reaction to proceed at low temperature.