Poly(lactic acid) (PLA) and other aliphatic polyesters containing the unit of lactic acid are very popular biodegradable materials. While the degradation products, lactic acids, have been worried to bring with negative influence on biocompatibility, the focused experimental studies are less reported. This study is aimed at an in vitro examination of cytotoxicity of both L-lactic acid and D,L-lactic acid. Mesenchymal stem cells (MSCs) derived from rat bone marrow are employed to test the cytotoxicity of the lactic acids. Considering that the addition of lactic acids not only introduces lactate groups but also alters medium pH and ion strength, these three candidate effects are examined in a decoupled way by setting different comparison groups. The results confirm that the change of medium pH is the predominant factor. It has also been found that D-lactate is more cytotoxic than L-lactate at high concentrations. Yet, either L-or D,L-lactic acids seem acceptable in most of medical applications, because the cytotoxicity is significant only when the concentrations are as high as 20 mmol/L for both of them.
A facile technique is herein reported to fabricate three-dimensional (3D) polymeric porous scaffolds with interior surfaces of a topographic microstructure favorable for cell adhesion. As demonstration, a well-known biodegradable polymer poly(lactide-co-glycolide) (PLGA) was employed as matrix. Under the porogen-leaching strategy, the large and soft porogens of paraffin were modified by colliding with small and hard salt particles, which generated micropits on the surfaces of paraffin spheres. The eventual PLGA scaffolds after leaching the modified porogens had thus interior surfaces of microscale roughness imprinted by those micropits. The microrough scaffolds were confirmed to benefit adhesion of bone marrow stromal cells (BMSCs) of rats and meanwhile not to hamper the proliferation and osteogenic differentiation of the cells. The insight and technique might be helpful for biomaterial designing in tissue engineering and regenerative medicine.
Surface patterning is very useful in biomaterial studies, yet it is not easy to prepare a micropattern with cell-adhesion contrast that is stable in a wet environment. Recently, a platform technique of transfer photolithography was invented to fabricate stable metal microarrays on the surface of a cell-adhesion resistant and mechanically biomimetic poly(ethylene glycol) hydrogel; the linker is the key chemical in such a transfer strategy. This article reports the design and synthesis of a hetero-bifunctional macromonomer linker with a thiol group at one end and an acryloyl group at the other end. The bifunctional linker was char- acterized by GPC and ~H NMR, and the average number of thiol groups in the bifunctional linker was detected by Ellman's reagent. The regent stability under wet conditions was also confirmed by the model reactants. The resultant micropatterned surfaces are meaningful for future studies of cell behaviors on mechanically biomimetic matrixes.
SUN JianGuoGRAETER Stefan VTANG JianHUANG JingHuanLIU PengLAI YuXiaoYU LinMAJER GünterSPATZ Joachim PDING JianDong