This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.
When approximation order is an odd positive integer, a simple method is given to construct compactly supported orthogonal symmetric complex scaling function with dilation factor 3. Two corresponding orthogonal wavelets, one is symmetric and the other is antisymmetric about origin, are constructed explicitly. Additionally, when approximation order is an even integer 2, we also give a method to construct compactly supported orthogonal symmetric complex that illustrate the corresponding results. wavelets. In the end, there are several examples
In this paper, we consider a compound Poisson risk model with taxes paid according to a loss-carry-forward system and dividends paid under a threshold strategy. First, the closed-form expression of the probability function for the total number of taxation periods over the lifetime of the surplus process is derived. Second, analytical expression of the expected accumulated discounted dividends paid between two consecutive taxation periods is provided. In addition, explicit expressions are also given for the exponential individual claims.