Let (H, a) be a monoidal Hom-bialgebra and (B,p) be a left (H, a)-Hom-comodule coalgebra. The new monoidal Hom-algebra B#y H is constructed with a Hom-twisted product Ba[H] and a. B × H Hom-smash coproduct. Moreover, a sufficient and necessary condition for B#y / to be a monoidal Hom-bialgebra is given. In addition, let (H, a) be a Hom-σ- Hopf algebra with Hom-〇 --antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra B#y H with the antipode S defined by S(b×h)=(1B×SH(a^-1)b(-1)))(SB(b(0))×1H to be a monoidal Hom-Hopf algebra is derived.
The definition and an example of BiHom-associative H-pseudoalgebra are given.A BiHom-H-pseudoalgebra is an H-pseudoalgebra(A,μ)with two mapsα,β∈HomH(A,A)satisfying the BiHom-associative law which generalizes BiHom-associative algebras and associative H-pseudoalgebras.Secondly,a method which is called the Yau twist of constructing BiHom-associative H-pseudoaglebra(A,(IH■H■Hα)μ,α,β)from an associative H-pseudoalgebra(A,μ)and two maps of H-pseudoalgebrasα,β,is introduced.Thirdly,a generalized form of the Yau twist is discussed.It concerns constructing a BiHom-associative H-pseudoalgebra(A,μ(α■β),α^~α,β^~β)from a BiHom-associative H-pseudoalgebra(A,μ,α^~,β^~)and two mapsα,β∈Hom H(A,A).Finally,a method of constructing BiHom-associative H-pseudoalgebra on tensor product space A■B of two BiHom-associative H-pseudoalgebras is given.
Some sufficient and necessary conditions are given for the equivalence between two crossed product actions of Hopf algebra H on the same linear category, and the Maschke theorem is generalized. Based on the result of the crossed product in the classic Hopf algebra theory, first, let A be a k-linear category and H be a Hopf algebra, and the two crossed products A#_σH and A#'_σH are isomorphic under some conditions. Then, let A#_σH be a crossed product category for a finite dimensional and semisimple Hopf algebra H. If V is a left A#σH-module and WC V is a submodule such that W has a complement as a left A-module, then W has a complement as a A#_σH-module.
Let H be a Hopf algebra and HYD the Yetter- Drinfeld category over H. First, the enveloping algebra of generalized H-Hom-Lie algebra L, i.e., Hom-Lie algebra L H in the category HYD, is constructed. Secondly, it is obtained that U(L) = T( L)/L where I is the Hom-ideal of T(L) generated by {ll'-l_((-1))·l'l_0-[l,l']|l,l'∈L}, and u: L,T(L)/I is the canonical map. Finally, as the applications of the result, the enveloping algebras of generalized H-Lie algebras, i.e., the Lie algebras in the category MyDn and the Hom-Lie algebras in the category of left H-comodules are presented, respectively.
Let H be a commutative, noetherian, semisimple and cosemisimple Hopf algebra with a bijective antipode over a field k. Then the semisimplicity of YD(H) is considered, where YD (H) means the disjoint union of the category of generalized Yetter-Drinfeld modules nYD^H( α, β) for any α, β E Aut Hopf(H). First, the fact that YD(H) is closed under Mor is proved. Secondly, based on the properties of finitely generated projective modules and semisimplicity of H, YD(H) satisfies the exact condition. Thus each object in YD(H) can be decomposed into simple ones since H is noetherian and cosemisimple. Finally, it is proved that YD (H) is a sernisimple category.