国家自然科学基金(61203137) 作品数:9 被引量:45 H指数:5 相关作者: 王磊 姬红兵 王磊 张文博 史亚 更多>> 相关机构: 西安电子科技大学 上海交通大学 西安电子科技大学青岛计算技术研究院 更多>> 发文基金: 国家自然科学基金 陕西省自然科学基金 国家教育部博士点基金 更多>> 相关领域: 自动化与计算机技术 电子电信 机械工程 更多>>
基于块对角化表示的多视角字典对学习 2021年 字典学习作为一种高效的特征学习技术被广泛应用于多视角分类中。现有的多视角字典学习方法大多只利用多视角数据的部分信息,且只学习一种类型的字典。实际上,多视角数据的相关性信息和多样性信息同样重要,且仅考虑一种合成型字典或解析型字典的学习算法不能同时满足处理速度、可解释性以及应用范围的要求。针对上述问题,提出了一种基于块对角化表示的多视角字典对学习方法(Block-Diagonal Representation based Multi-View Dictionary-Pair Learning,BDR-MVDPL),该方法通过引入字典对学习模型获得包含更多对分类有用的信息的表示系数,并通过显式约束使其具有块对角化结构,保证了编码系数矩阵的判别性;然后采用特征融合的方式将所有视角的编码系数进行串联,并将串联后的编码系数回归到对应的标签向量上,使多视角数据的多样性信息和数据相关性能够同时被利用;最后,该算法将字典学习与分类器学习整合到一个框架中,采用迭代求解的方式,交替更新字典对和分类器,使所提方法能够自动完成分类。3个多特征数据集上的实验结果表明,与主流的多视角字典学习算法相比,所提算法在保持低复杂度的同时具有更高的分类准确率。 张帆 张帆 姬红兵 姬红兵 王磊关键词:字典学习 基于多集典型相关分析的雷达辐射源指纹识别 被引量:13 2013年 为了提升雷达辐射源指纹识别系统的性能,提出了一种基于多集典型相关分析的辐射源指纹识别新策略.首先抽取辐射源信号的模糊函数多普勒切片作为初始特征,继而利用多集典型相关分析实现了表征能力不同的各切片间的特征融合与冗余消除,而进一步推广得到的多集判别典型相关分析在保持较低典型向量阶数的同时还可获得更优的识别性能.由于采用多集策略进行切片特征的直接融合,模糊函数加多集典型相关分析法不仅避免了代表性切片法中切片寻优的不确定性,而且克服了传统典型相关分析只适用于两集特征的局限性.实测雷达辐射源数据上的实验表明所提方法有效地优化了雷达指纹特征. 王磊 史亚 姬红兵关键词:模糊函数 一种自适应权值的多特征融合分类方法 被引量:11 2013年 由于类别较多或者特征单一等原因,传统的支持向量机方法对一些复杂问题的分类,很难获得好的识别效果。首先使用一种树状结构将概率支持向量机推广到多分类问题;然后提出一种自适应权值的多特征融合方法,根据概率输出自动调整不同分类器的相关权值,将所有分类器的结果进行加权得到最终的判决结果。为解决实际应用中常出现的非平衡问题,提出综合权值方法,将类别权值与特征权值进行综合。实验结果表明,融合方法较之传统的支持向量机一对一方法以及概率支持向量机方法能够获得更高的识别率;对于非平衡问题,综合权值方法可以得到更加合理的识别结果。 张文博 姬红兵 王磊关键词:模式识别 自适应权值 一种面向信号分类的匹配追踪新方法 被引量:9 2014年 匹配追踪(MP)的主要策略是通过每次迭代时选择一个局部最优解,从而逐步逼近原始信号。然而传统的MP系列算法进行原子匹配时,各类原子集间存在交集,从而影响了原子的表示能力以及相应的分类效果。基于此,该文提出一种适用于信号监督分类的匹配追踪新算法。其原子挑选的准则为:同类信号采用相同的原子集匹配,获取相同的类内表示结构;异类信号选择不同的原子集匹配,从而增强信号的类间差异。示例分析表明,使原子集间相互独立,能够减少异类信号间的共性因素,强化信号间的区分度,从而有利于提升分类识别效果。通过在标准图像库和实测雷达辐射源信号集上的实验表明,较之传统的MP系列方法,所提算法对噪声和遮挡具有更强的鲁棒性。 王磊 周乐囡 姬红兵 林琳关键词:雷达辐射源识别 特征提取 耦合保持投影哈希跨模态检索 2021年 目的基于哈希的跨模态检索方法因其检索速度快、消耗存储空间小等优势受到了广泛关注。但是由于这类算法大都将不同模态数据直接映射至共同的汉明空间,因此难以克服不同模态数据的特征表示及特征维度的较大差异性,也很难在汉明空间中同时保持原有数据的结构信息。针对上述问题,本文提出了耦合保持投影哈希跨模态检索算法。方法为了解决跨模态数据间的异构性,先将不同模态的数据投影至各自子空间来减少模态“鸿沟”,并在子空间学习中引入图模型来保持数据间的结构一致性;为了构建不同模态之间的语义关联,再将子空间特征映射至汉明空间以得到一致的哈希码;最后引入类标约束来提升哈希码的判别性。结果实验在3个数据集上与主流的方法进行了比较,在Wikipedia数据集中,相比于性能第2的算法,在任务图像检索文本(I to T)和任务文本检索图像(T to I)上的平均检索精度(mean average precision,mAP)值分别提升了6%和3%左右;在MIRFlickr数据集中,相比于性能第2的算法,优势分别为2%和5%左右;在Pascal Sentence数据集中,优势分别为10%和7%左右。结论本文方法可适用于两个模态数据之间的相互检索任务,由于引入了耦合投影和图模型模块,有效提升了跨模态检索的精度。 闵康凌 张国宾 王磊 王磊关键词:哈希 图模型 子空间学习 基于平均密度投影和平移高斯模型的肺结节检测与分割算法 被引量:5 2014年 针对CT图像中肺结节与血管粘连导致分割困难的问题,提出了一种基于平均密度投影和平移高斯模型的肺结节检测与分割算法。首先通过对二维CT序列图像作平均密度投影(AIP),融合局部三维特征生成AIP图像,然后利用阈值分割和形态学方法对结节轮廓进行粗分割,最后通过建立平移高斯模型来拟合肺结节,从而实现对肺结节的精确分割。对30个血管粘连性肺结节CT图像的实验结果表明,本文算法与专业医师标记区域的面积交迭度达到91%,能够实现对粘连型肺结节的有效分割,但对于灰度较弱且体积较小的肺结节仍存在漏检的风险,需要后续进一步研究。 邱实 汶德胜 王磊基于块对角投影表示的人脸识别 2021年 针对大多数特征表示算法在挖掘高维数据内在结构时容易受到噪声的影响,以及特征学习与分类器设计割裂导致分类性能降低的问题,提出了一种新的基于特征表示的人脸识别方法,称为块对角投影表示(BDPR)学习。首先,利用样本信息对每类样本的编码系数施加一个加权矩阵,通过局部约束来加强表示系数之间的相似性,从而降低噪声对系数学习的影响,使所提方法能够更好地保持数据的局部结构。其次,为了实现数据与编码系数相关联,降低表示系数的学习难度,构造了块对角化判别约束项来学习一个判别投影,通过投影从低维数据中提取样本表示系数,使系数包含更多的样本间全局结构信息且具有更低的计算复杂度。最后,将系数学习和分类器学习整合到同一框架下,同时增大不同类别样本间的"标签距离",采用迭代求解的方式交替更新判别投影和分类器,最终得到最适合当前表示特征的分类器,使得所提方法能自动完成分类。多个公开的人脸数据集上的实验结果表明:较之传统的协作表示分类和多个主流的子空间学习方法,所提方法均取得了更优的识别效果。 刘保龙 王勇 王勇 王磊关键词:图像分类 基于核保持嵌入的子空间学习 被引量:1 2021年 子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息。子空间学习的性能提升主要取决于相似性关系的衡量方式和特征嵌入的图构建手段。文中针对子空间学习中的相似性度量与图构建两大问题进行研究,提出了一种基于核保持嵌入的子空间学习算法(Kernel-preserving Embedding based Subspace Learning, KESL),该算法通过自表示技术自适应地学习数据间的相似性信息和基于核保持的构图。首先针对传统降维方法无法挖掘高维非线性数据的内部结构问题,引入核函数并最小化样本的重构误差来约束最优的表示系数,以期挖掘出有利于分类的数据结构关系。然后,针对现有基于图的子空间学习方法大都只考虑类内样本相似性信息的问题,利用学习到的相似性矩阵分别构建类内和类间图,使得在投影子空间中同类样本的核保持关系得到加强,不同类样本间的核保持关系被进一步抑制。最后,通过核保持矩阵与图嵌入的联合优化,动态地求解出最优表示下的子空间投影。在多个数据集上的实验结果表明,所提算法在分类任务中的性能优于主流的子空间学习算法。 贺文琪 刘保龙 孙兆川 王磊 王磊关键词:子空间学习 雷达辐射源个体识别综述 被引量:6 2022年 雷达辐射源个体识别通过提取个体特征来辨识雷达个体,是电子对抗领域的热点研究方向。近年来随着深度学习的飞速发展及其在各领域的成功应用,基于深度学习的雷达辐射源个体识别成为焦点。虽然研究多年,成果丰富,但目前尚缺少关于该方向全面、细致的综述。基于此,该文从雷达辐射源个体特征机理分析、基于手工特征的识别方法、基于深度学习的识别方法以及数据集构建4个方面着手,对雷达辐射源个体识别开展系统的综述工作,并对当前现状和未来方向进行总结与展望,旨在推动雷达辐射源个体识别理论和方法研究的新发展。 史亚 张文博 朱明哲 王磊 徐胜军关键词:辐射源个体识别 数据集