The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).
Generally, casing treatment(CT) is a passivity method to enhance the stall margin of fan/compressor. A novel casing treatment based on the small disturbance theory and vortex and wave interaction suggestion is a method combining passive control and active control, which has been proved effective at enhancing the stall margin of fan/compressor in experiment. In order to investigate the mechanism of this kind of casing treatment, an experimental investigation of a stall precursor-suppressed(SPS) casing treatment with air suction or blowing air is conducted in the present paper. The SPS casing treatment is designed to suppressing stall precursors to realize stall margin enhancement in turbomachinery. The experimental results show that the casing treatment with blowing air of small quantity can improve the stall margin by about 8% with about 1% efficiency loss. By contrast, the SPS casing treatment with micro-bias flow does not improve the stall margin much more than that without bias flow, even worse. Meanwhile, the present investigation has also attempted to reveal the mechanism of stall margin improvement with the casing treatment.It is found that the stall margin improvements vary with the modification of the unsteady shedding flow and the unsteady wall boundary impedance. The experimental results agree fairly well with the theoretical prediction using a flow stability model of rotating stall.
Through-flow method is still widely applied in the revolution of the design of a turbomachinery, which can provide not merely the performance characteristic but also the flow field. In this study,a program based on the through-flow method was proposed, which had been verified by many other numerical examples. So as to improve the accuracy of the calculation, abundant loss and deviation models dependent on the real geometry of engine were put into use,such as: viscous losses,overflow in gaps, leakage from a flow path through seals. By means of this program, the aerodynamic performance of a certain high through-flow commercial fan/booster was investigated. On account of the radial distributions of the relevant parameters, flow deterioration in this machine was speculated. To confirm this surmise, 3-D numerical simulation was carried out with the help of the NUMECA software. Through detailed analysis, the speculation above was demonstrated, which provide sufficient evidence for the conclusion that the through-flow method is an essential and effective method for the performance prediction of the fan/booster.