现有的网络业务流到QoS(Quality of Service)类的聚集一般采用定量的聚集方式,这类方法需要业务流给出确定的QoS参数值,并且QoS参数之间的权重系数是精确的,系统设置的QoS类也是固定不变的;而现实中,这些因素往往是不确定、不精确的.于是本文引入定性的偏好逻辑理论、并结合QoE(Quality of Experience)建模业务流的偏好需求,再基于霍尔逻辑对冲突的偏好需求进行有效的检测和消除,继而借助非单调推理在动态变化的候选集QoS类中进行选择,最终实现一种以偏好为内容的QoS类动态聚集方法 PLM(Preference Logic Model for flows aggregation).实验结果表明,本文提出的聚集方法,可有效建模业务流不确定、不精确的QoS需求;在高可变的动态环境中,当业务流QoS需求发生变化,或QoS类发生变化,都能对业务流进行有效的聚集调节以充分利用系统资源.因此,与其他聚集方法相比,在延时、丢包率、吞吐量等各个方面表现优良.
To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.
会话类流存在实时性高、时延抖动低、吞吐量大的特点,为了更好地对会话类混合流进行分类和提高用户的QoE(Quality of Experience),文中从网络实时会话流入手,分析混合流的QoS(Quality of Service)并建立与QoE的模型关系,从而得出不同QoS特征下的QoE的概率分布,并把其中最明显的特征概率分布以网络流特征的形式加入到原有流分类特征集当中,然后对QQ视频、2D游戏、3D游戏、Skype语音四种会话混合流进行分类。通过C4.5决策树机器学习算法进行分类。实验结果表明:在流分类的正确率、召回率和F-测度上,使用QoE概率分布特征的分类算法相比于现有方案,性能均有显著提高。