In this paper,the wrinkle-crease interaction behavior of a rectangular membrane under edge tension is simulated.The creased membrane is modeled by using a Modified Two-Parameter model.In this model,two crease parameters,i.e.the effective modulus of creased membrane and the residual stress from creasing,are computed by using MacNeal's method that was firstly applied directly in a flat membrane with the local crease.We have proposed a method to solve the wrinkling computing issue of the creased membrane by using a Direct Perturb-Force technique in our previous work.Based on our method,the effects of crease location on the wrinkle-crease interaction behavior can be evaluated accurately.These results will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.
Prediction of wrinkling characteristics is strongly correlated with the strain perpendicular to wrinkling direc- tion. In this paper, the strain field of wrinkled membrane is tested by VIC-3D system based on the digital image correlation technique. Experimental results are validated by the tension wrinkling simulation. The experimental strain perpendicular to wrinkling direction is analyzed in depth. The wrinkling strain of a square wrinkled membrane under corner tension is extracted from experimental strain perpendicular to wrinkling direction. A quantitative characterization format of the experimental wrinkling strain is proposed. A modified prediction method of wrinkling amplitude is presented based on the experimental wrinkling strain. The re- sults show that the precision of modified prediction model has improved 13.2% compared with the classical prediction model. The results reveal that the modified model can give an accurate prediction of the wrinkling amplitude.