Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the mass transfer performance and processing capacity. In view of the above, this paper studies the liquid–liquid flow and liquid holdup in RSR under various conditions with a high-speed camera. The paper firstly demonstrates two flow patterns and liquid holdup patterns that we obtained from our experiment and then presents in succession a flow pattern and a liquid holdup criterion for the transition of film flow to filament flow and complete filling to incomplete filling. It is found that experimental parameters, including rotor–stator distance, rotational speed and volume flow rate exert great influence on the average droplet diameter and size distribution. Besides, by comparison and contrast, we also find that the experimental values match well with our previous predicted calculations of the average diameter, and the relation between the average diameter and the mean energy dissipation rate.
Yubin WangJun LiYang JinMing ChenYan CaoJianhong Luo
In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosphate(TBP)in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene(HDPE)microchannel.High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force,and the majority of the droplets with average diameter of 20–100μm were produced in the microchannel.The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time.The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method,and a mathematical model of the mass transfer coefficient in dispersed phase was proposed.
This work focuses on drop breakage for liquid-liquid system with an adoption of numerical simulation by using computational fluid dynamics and population balance model (PBM) coupled with two-fluid model (TFM). Two different breakage kernels based on identical breakage mechanism but different descriptions of breaking time are take n into account in this work. Eight cases corresp on ding to distinct configurations of agitator are carried out to validate numerical predictions, namely agitators with different porosity and hole diameters, respectively implemented in Cases 1 to 5 and Cases 6 to 8. The results are compared with experimental data for testing the applicability of both kernels. Simulations are implemented, in this work, with an approach of class method for the solution of population balance model by the special-purpose computational fluid dynamics solver Fluent 16.1 based on finite volume method, and the grids used for meshing the solution domain are accomplished in a commercial software Gambit 2.4.6. The effects of configurations of agitator corresponding to different parameters mentioned above on final Sauter mean diameter are equally concentrated in this work. Analysis of both kernels and comparisons with experimental results reveal that, the second kernel has more decent agreement with experiments, and the results of investigations on effects of agitator configurations show that the in fluences of these parameters on Sauter mean diameter are marginal, but appropriate porosity and hole diameter are actually able to decrease Sauter mean diameter. These outcomes allow us to draw general conclusions and help investigate performances of liquid-liquid system.