In this paper, a new proof of superclose of a Crouzeix-Raviart type finite element is given for second order elliptic boundary value problem by Bramble-Hilbert lemma on anisotropic meshes.
The main aim of this paper is to study tile convergence of a nonconforming triangular plate element-Morley element under anisotropic meshes. By a novel approach, an explicit bound for the interpolation error is derived for arbitrary triangular meshes (which even need not satisfy the maximal angle condition and the coordinate system condition ), the optimal consistency error is obtained for a family of anisotropically graded finite element meshes.
The convergence analysis of the lower order nonconforming element pro- posed by Park and Sheen is applied to the second-order elliptic problem under anisotropic meshes. The corresponding error estimation is obtained. Moreover, by using the interpo- lation postprocessing technique, a global superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself is derived. Numerical results are also given to verify the theoretical analysis.