您的位置: 专家智库 > >

国家自然科学基金(10471115)

作品数:8 被引量:19H指数:3
相关作者:郭铁信曾小林李克华倪丹金国华更多>>
相关机构:厦门大学北京航空航天大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 8篇中文期刊文章

领域

  • 8篇理学

主题

  • 3篇定理
  • 2篇算子
  • 2篇共轭
  • 2篇赋范
  • 2篇RANDOM
  • 1篇定模
  • 1篇对称算子
  • 1篇有界
  • 1篇正则
  • 1篇正则值
  • 1篇随机赋范空间
  • 1篇随机赋范模
  • 1篇随机共轭空间
  • 1篇随机内积模
  • 1篇同态
  • 1篇注记
  • 1篇自伴
  • 1篇自伴算子
  • 1篇线性泛函
  • 1篇连续线性泛函

机构

  • 5篇厦门大学
  • 1篇北京航空航天...

作者

  • 6篇郭铁信
  • 1篇孟永森
  • 1篇周国军
  • 1篇金国华
  • 1篇曾小林
  • 1篇倪丹
  • 1篇李克华

传媒

  • 3篇厦门大学学报...
  • 2篇数学研究
  • 2篇Scienc...
  • 1篇工程数学学报

年份

  • 2篇2008
  • 1篇2007
  • 4篇2006
  • 1篇2005
8 条 记 录,以下是 1-8
排序方式:
完备随机赋范空间中几乎处处有界线性算子的几个基本结果
2006年
在随机度量理论的新版本下,改进并重新证明了如下结论:设(S1,X1)和(S2,X2)均为数域K上以(Ω,A,μ)为基的随机赋范空间,当S2是完备时,(B(S1,S2),X)亦为完备的,其中(B(S1,S2),X)为所有定义在S1上取值于S2中的几乎处处(简写为a.s.)有界线性算子所成的随机赋范空间.并在此基础上证明了当T为完备随机赋范空间S上a.s.有界线性算子时,如果μ({ω∈Ω:XT(ω)≥1})=0,则算子I-T有a.s.有界逆算子.此外还引入了在完备随机赋范模中几乎处处有界线性算子的谱的概念,并指出关于这种谱研究中的本质困难.
郭铁信金国华
关键词:正则值
完备随机内积模上的Hellinger-Toeplistz定理
2006年
在新近发展起来的随机共轭空间理论基础上,利用完备随机内积模上的Riesz表示定理,证明了如下结论:设(S,χ)是任一完备随机内积模,T:S→S是S上任一模同态.若XTp,q=Xp,Tq,p,q∈S,那么T是几乎处处有界的.
郭铁信李克华
关键词:随机内积模
完备随机内积模中的Friedrichs定理
2006年
完备随机内积模是Hilbert空间的随机推广.最近,经典的Riesz表示定理已经被推广到完备随机内积模上,在此基础上本文将Hilbert空间上经典的Friedrichs定理推广到完备随机内积模上.首先,证明完备随机内积模上任一正Her-mite型惟一地对应一个正自共轭算子.值得指出的是:完备随机内积模上Friedrichs定理的证明中所涉及的一系列基本概念与方法都是以随机共轭空间理论为出发点的,与经典情形完全不同.
郭铁信倪丹
关键词:HERMITE型自伴算子
随机赋范模上非零连续线性泛函的存在性被引量:4
2008年
本文证明了在任意满支承的随机赋范模上存在一个非零连续线性泛函的充要条件是它的基底空间至少存在一个原子;存在足够多非零连续线性泛函的充要条件是它的基底空间本质上由至多可数个原子生成。该结果表明经典的共轭空间理论对随机赋范模是普遍失效的,进一步揭示了随机共轭空间理论对随机赋范模发展的突出重要性。同时本文也包括了许多结果,它们表明许多由随机赋范模生成的经典赋准范空间拥有一个或足够多的非零连续线性泛函的特征成为一目了然!
郭铁信曾小林
关键词:随机赋范模连续线性泛函随机共轭空间
关于完备随机内积模中的Lax-Milgram定理的注记
2006年
设(S,X)为数域K上以σ-有限测度空间(Ω,A,μ)为基的完备的RIP-模,而且α:S×S→L(μ,K)满足如下条件:(A)存在ξ∈L+(μ),使得a(p,q)ξ·X^p·X^q,p,q∈S;(B)a是coercive(即,存在η∈L+(μ),使得a(p,p)η·X^p2,p∈S且μ({ωη(ω)=0})=0);(C)对每个q∈S,a(·,q):S→L(μ,K)是模同态,且对每个p∈S,a(p,ξq1+ηq2)=ξ-a(p,q1)+η-a(p,q2),q1,q2∈S及ξ,η∈L(μ,K).则存在唯一的连续模同态A:S→S使A-1存在且μ-a.s.有界,还满足:(1)a(p,q)=XA(p),q,p,q∈S;(2)X^A-1(p)1ηX^p,p∈S.
郭铁信周国军
The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-mulian theorem in complete random normed modules to stratification structure被引量:18
2008年
Let (Ω,A,μ) be a probability space, K the scalar field R of real numbers or C of complex numbers,and (S,X) a random normed space over K with base (Ω,A,μ). Denote the support of (S,X) by E, namely E is the essential supremum of the set {A ∈ A : there exists an element p in S such that Xp(ω) > 0 for almost all ω in A}. In this paper, Banach-Alaoglu theorem in a random normed space is first established as follows: The random closed unit ball S*(1) = {f ∈ S* : Xf* 1} of the random conjugate space (S*,X*) of (S,X) is compact under the random weak star topology on (S*,X*) iff E∩A=: {E∩A | A ∈ A} is essentially purely μ-atomic (namely, there exists a disjoint family {An : n ∈ N} of at most countably many μ-atoms from E∩A such that E =∪n∞=1 An and for each element F in E∩A, there is an H in the σ-algebra generated by {An : n ∈ N} satisfying μ(F △H) = 0), whose proof forces us to provide a key topological skill, and thus is much more involved than the corresponding classical case. Further, Banach-Bourbaki-Kakutani-mulian (briefly, BBKS) theorem in a complete random normed module is established as follows: If (S,X) is a complete random normed module, then the random closed unit ball S(1) = {p ∈ S : Xp 1} of (S,X) is compact under the random weak topology on (S,X) iff both (S,X) is random reflexive and E∩A is essentially purely μ-atomic. Our recent work shows that the famous classical James theorem still holds for an arbitrary complete random normed module, namely a complete random normed module is random reflexive iff the random norm of an arbitrary almost surely bounded random linear functional on it is attainable on its random closed unit ball, but this paper shows that the classical Banach-Alaoglu theorem and BBKS theorem do not hold universally for complete random normed modules unless they possess extremely simple stratification structure, namely their supports are essentially purely μ-atomic. Combining the James theorem and BBKS theorem in complete random normed modules leads d
GUO TieXin Key Laboratory of Information Mathematics and Behavior of Ministry of Education, Department of Mathemat-ics, Beihang University, Beijing 100083, China
关键词:RANDOMRANDOMREFLEXIVITYRANDOMWEAKCOMPACTNESSRANDOMWEAKCOMPACTNESS
Several applications of the theory of random conjugate spaces to measurability problems被引量:4
2007年
The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems which occur in the recent study of the Lebesgue (or more general, Orlicz)-Bochner function spaces as well as in a slightly different way in the study of the random functional analysis but for which the measurable selection theorems currently available are not applicable. It is important that this paper provides a new method of studying a large class of the measurability problems, namely first converting the measurability problems to the abstract existence problems in the random metric theory and then combining the random metric theory and the relative theory of classical spaces so that the measurability problems can be eventually solved. The new method is based on the deep development of the random metric theory as well as on the subtle combination of the random metric theory with classical space theory.
Tie-xin GUO Department of Mathematics, School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
完备随机内积模上稠定模同态的共轭算子
2005年
对定义在完备随机内积模的稠子模上的模同态引入了共轭算子的概念并讨论其基本性质,尤其证明了共轭算子的闭性.
郭铁信孟永森
关键词:共轭算子
共1页<1>
聚类工具0