Let (Ω,A,μ) be a probability space, K the scalar field R of real numbers or C of complex numbers,and (S,X) a random normed space over K with base (Ω,A,μ). Denote the support of (S,X) by E, namely E is the essential supremum of the set {A ∈ A : there exists an element p in S such that Xp(ω) > 0 for almost all ω in A}. In this paper, Banach-Alaoglu theorem in a random normed space is first established as follows: The random closed unit ball S*(1) = {f ∈ S* : Xf* 1} of the random conjugate space (S*,X*) of (S,X) is compact under the random weak star topology on (S*,X*) iff E∩A=: {E∩A | A ∈ A} is essentially purely μ-atomic (namely, there exists a disjoint family {An : n ∈ N} of at most countably many μ-atoms from E∩A such that E =∪n∞=1 An and for each element F in E∩A, there is an H in the σ-algebra generated by {An : n ∈ N} satisfying μ(F △H) = 0), whose proof forces us to provide a key topological skill, and thus is much more involved than the corresponding classical case. Further, Banach-Bourbaki-Kakutani-mulian (briefly, BBKS) theorem in a complete random normed module is established as follows: If (S,X) is a complete random normed module, then the random closed unit ball S(1) = {p ∈ S : Xp 1} of (S,X) is compact under the random weak topology on (S,X) iff both (S,X) is random reflexive and E∩A is essentially purely μ-atomic. Our recent work shows that the famous classical James theorem still holds for an arbitrary complete random normed module, namely a complete random normed module is random reflexive iff the random norm of an arbitrary almost surely bounded random linear functional on it is attainable on its random closed unit ball, but this paper shows that the classical Banach-Alaoglu theorem and BBKS theorem do not hold universally for complete random normed modules unless they possess extremely simple stratification structure, namely their supports are essentially purely μ-atomic. Combining the James theorem and BBKS theorem in complete random normed modules leads d
GUO TieXin Key Laboratory of Information Mathematics and Behavior of Ministry of Education, Department of Mathemat-ics, Beihang University, Beijing 100083, China
The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems which occur in the recent study of the Lebesgue (or more general, Orlicz)-Bochner function spaces as well as in a slightly different way in the study of the random functional analysis but for which the measurable selection theorems currently available are not applicable. It is important that this paper provides a new method of studying a large class of the measurability problems, namely first converting the measurability problems to the abstract existence problems in the random metric theory and then combining the random metric theory and the relative theory of classical spaces so that the measurability problems can be eventually solved. The new method is based on the deep development of the random metric theory as well as on the subtle combination of the random metric theory with classical space theory.
Tie-xin GUO Department of Mathematics, School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083, China