The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.
Customer requirements analysis is the key step for product variety design of mass customiza-tion(MC). Quality function deployment (QFD) is a widely used management technique for understanding the voice of the customer (VOC), however, QFD depends heavily on human subject judgment during extracting customer requirements and determination of the importance weights of customer requirements. QFD pro-cess and related problems are so complicated that it is not easily used. In this paper, based on a general data structure of product family, generic bill of material (GBOM), association rules analysis was introduced to construct the classification mechanism between customer requirements and product architecture. The new method can map customer requirements to the items of product family architecture respectively, accomplish the mapping process from customer domain to physical domain directly, and decrease mutual process between customer and designer, improve the product design quality, and thus furthest satisfy customer needs. Finally, an example of customer requirements mapping of the elevator cabin was used to illustrate the proposed method.
Many existing product family design methods assume a given platform, However, it is not an in-tuitive task to select the platform and unique variable within a product family. Meanwhile, most approaches are single-platform methods, in which design variables are either shared across all product variants or not at all. While in multiple-platform design, platform variables can have special value with regard to a subset of product variants within the product family, and offer opportunities for superior overall design. An information theoretical approach incorporating fuzzy clustering and Shannon's entropy was proposed for platform variables selection in multiple-platform product family. A 2-level chromosome genetic algorithm (2LCGA) was proposed and developed for optimizing the corresponding product family in a single stage, simultaneously determining the optimal settings for the product platform and unique variables. The single-stage approach can yield im-provements in the overall performance of the product family compared with two-stage approaches, in which the first stage involves determining the best settings for the platform and values of unique variables are found for each product in the second stage. An example of design of a family of universal motors was used to verify the proposed method.