Let X1,X2,... be a sequence of independent random variables (r.v.s) belonging to the domain of attraction of a normal or stable law. In this paper, we study moderate deviations for the self-normalized sum n X ∑^n_i=1Xi/Vm,p ,where Vn,p (∑^n_i=1|Xi|p)^1/p (P 〉 1).Applications to the self-normalized law of the iteratedlogarithm, Studentized increments of partial sums, t-statistic, and weighted sum of independent and identically distributed (i.i.d.) r.v.s are considered.
This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors derive the strong convergence with rate,strong representation as well as asymptotic normality of the conditional quantile estimator.Also,a Berry-Esseen-type bound for the estimator is established.In addition,the finite sample behavior of the estimator is investigated via simulations.