The numerical simulation of the self-propelled motion of a fish with a pair of rigid pectoral fins is presented.A Navier-Stokes equation solver incorporating with the multi-block and overset grid method is developed to deal with the multi-body and moving body problems.The lift-based swimming mode is selected for the fin motion.In the lift-based swimming mode,the fin can generate great thrust and at the same time have no generation of lift force.It can be found when a pair of rigid pectoral fins generates the hydrodynamic moment,it may also generate a lateral force opposite to the centripetal direction,which has adverse effect on the turn motion of the fish.Furthermore,the periodic vortex structure generation and shedding,and their effects on the generation of hydrodynamic force are also demonstrated in this article.
Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant reference values during the platform design procedure. In this paper, a series of numerical simulation on the interaction of a triple-hulled offshore observation platform with different incident waves is carried out. All of the simulations are implemented utilizing our own solver naoe-FOAM-SJTU, which is based and developed on the open source tools of OpenFOAM. Duration curves of motion characteristics and loads acting on the platform are obtained, and a comparison between the results of the amplitude in different incident waves is presented. The results show that the solver is competent in the simulation of motion response of platforms in waves.