Mineral particles or particulate matters(PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading.However,precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor(EF) measurements.To understand PM emissions from these practices in northeastern China,we measured EFs of PM_(10) and PM_(2.5) from three field operations(i.e.,tilling,planting and harvesting) in major crop production(i.e.,corn and soybean),using portable real-time PM analyzers and weather station data.County-level PM_(10) and PM_(2.5) emissions from agricultural tillage and harvest were estimated,based on local EFs,crop areas and crop calendars.The EFs averaged(107 ± 27),(17 ± 5) and 26 mg/m^2 for field tilling,planting and harvesting under relatively dry conditions(i.e.,soil moisture 〈15%),respectively.The EFs of PM from field tillage and planting operations were negatively affected by topsoil moisture.The magnitude of PM_(10) and PM_(2.5) emissions from these three activities were estimated to be 35.1 and 9.8 kilotons/yr in northeastern China,respectively,of which Heilongjiang Province accounted for approximately45%.Spatiotemporal distribution showed that most PM_(10) emission occurred in April,May and October and were concentrated in the central regions of the northeastern plain,which is dominated by dryland crops.Further work is needed to estimate the contribution of agricultural dust emissions to regional air quality in northeastern China.
This study presents the observations of PM10 and PM2.5 concentrations at an agricultural site from April to October 2012 in Dehui city,China.Ambient air was sampled by filter-based samplers and online PM monitors.The filter samples were analyzed to determine the abundance of ionic/inorganic elements,organic carbon(OC) and elemental carbon(EC).The daily PM10 concentrations varied significantly over the monitoring period,with an average of168 ± 63(in the range of 52-277) μg/m^3 during the land preparation/planting period(26 April-15 June),85 ± 65(36-228) μg/m^3 during the growing season(16 June-25 September),and 207 ±88(103-310) μg/m^3 during the harvest period(26 September-31 October).PM2.5 accounted for44%,56%and 66%of atmospheric PM10 during these periods,respectively.The PM10 diurnal variation showed a distinct peak from 16:00 to 21:00(LST) during the growing and harvesting seasons,while a gradual increase throughout the daytime until 17:00 was observed during tilling season.Mineral dust elements(Al,Ca,Fe,and Mg) dominated the PM10 chemical composition during the tilling season;OC,NO3^-,SO4^(2-) and NH4~+ during the growing season;and carbonaceous species(i.e.,OC and EC) during the harvesting season.Our results indicate that the soil particles emitted by farm tillage and organic matter released from straw burning are the two most significant sources of PM10 emissions contributing to the recurring high pollution events in this region.Therefore,development of agricultural PM inventories from soil tillage and straw burning is prioritized to support air quality modeling.
This study presents the mass concentrations of PM(2.5),O3,SO2 and NOxat one urban,one suburban and two rural locations in the Changchun region from September 25 to October 272013. Major chemical components of PM(2.5)at the four sites were daily sampled and analyzed. Most of daily concentrations of SO2(7–82 μg/m^3),O3(27–171 μg/m^3) and NOx(14–213 μg/m^3) were below the limits of the National Ambient Air Quality Standard(NAAQS)in China. However,PM(2.5)concentrations(143–168 μg/m^3) were 2-fold higher than NAAQS.Higher PM(2.5)concentrations(~ 150 μg/m^3) were measured during the pre-harvest and harvest at the urban site,while PM(2.5)concentrations significantly increased from 250 to400 μg m^(-3) at suburban and rural sites with widespread biomass burning. At all sites,PM(2.5)components were dominated by organic carbon(OC) and followed by soluble component sulfate(SO4^(2-)),ammonium(NH4~+) and nitrate(NO3^-). Compared with rural sites,urban site had a higher mineral contribution and lower potassium(K~+and K) contribution to PM(2.5).Severe atmospheric haze events that occurred from October 21 to 23 were attributed to strong source emissions(e.g.,biomass burning) and unfavorable air diffusion conditions.Furthermore,coal burning originating from winter heating supply beginning on October 18 increased the atmospheric pollutant emissions. For entire crop harvest period,the Positive Matrix Factorization(PMF) analysis indicated five important emission contributors in the Changchun region,as follows: secondary aerosol(39%),biomass burning(20%),supply heating(18%),soil/road dust(14%) and traffic(9%).
Wei Wei ChenDaniel Q.TongMo DanShi Chun ZhangXue Lei ZhangYue Peng Pan