This study aims to investigate the effects of interfacial debonding and fiber volume fraction on the stressstrain behavior of the fiber reinforced metal matrix composites subjected to off-axis loading.The generalized method of cells(GMC)is used to analyze a representative element whose fiber shape is circular.The constant compliant interface model(CCI)is also adopted to study the response of composites with imperfect interfacial bonding.Results show that for the composites subjected to off-axis loading,the mechanical behaviors are affected appreciably by the interfacial debonding and the fiber volume fraction.
Xiaojun ZhuXuefeng ChenZhi ZhaiQiang ChenShaohua TianZhengjia He
In this paper,a novel method based on strain distribution is presented to determine the presence of damage and its location in composite plate.By building a damage monitoring experimental platform with Fiber Bragg Gratings(FBGs)sensors,impact experiments are made respectively to gain the strain distribution both in heath and damage state.EEMD is used to process the data and IMFs energy feature is evaluated.Then,support vector machine is applied to identify the damage and the testing classification accuracy reaches 92.86%.Finally,by using the influence of the damage position and the propagation path on energy,the damage location is predicted.The experimental results indicate that the proposed method can accurately identify the presence and position of damage.The effectiveness and reliability of the proposed method is verified.
Qiang ChenXuefeng ChenXiaojun ZhuZhi ZhaiShaohua TianZhengjia He
针对复合材料风电叶片在实际使用过程常常出现损伤的问题,提出一种基于细观失效准则的复合材料细观损伤分析模型。采用通用单胞模型(Generalized method of cells,GMC)对具有周期性的单向复合材料层合板进行细观建模,并且引入基于Huang模型的细观失效准则和刚度退化准则,从细观层面上分别对纤维和基体的失效模式进行表征,对4种单向复合材料层合板的渐进损伤过程进行数值模拟。在试验验证过程中,先对两种不同状态(含损伤和无损伤)的复合材料风电叶片进行了静力加载试验,采用光纤光栅传感器监测损伤对风电叶片应变的影响;然后通过典型的单向层合板的拉伸破坏试验得到的应变曲线来验证本算法的有效性。结果表明:当复合材料风电叶片中存在损伤时,将降低其承载能力,并且应变值变化明显,可以通过应变来监测叶片的健康状态;提出的模型能够通过得到的应变曲线准确地预测单向复合材料层合板的力学性能和破坏强度值。