A magnetic ground state is revealed for the first time in zigzag-edged carbon nanoscrolls(ZCNSs)from spin-unrestricted density functional theory calculations.Unlike their flat counterpart-zigzag-edged carbon nanoribbons,which are semiconductors with spin-degenerate electronic structure-ZCNSs show a variety of magnetic configurations,namely spin-selective semiconductors,metals,semimetals,quasi-half-metals,and half-metals.To the best of our knowledge,this is the first discovery of quasi-half-metals and half-metals in a pure hydrocarbon without resort to an external electric field.In addition,we calculated the spin-dependent transportation of the semiconducting ZCNSs with 12 and 20 zigzag chains,and found that they are 13% and 17% at the Fermi level,respectively,suggesting that ZCNS can be an effective spin filter.
Lin LaiJing LuLu WangGuangfu LuoJing ZhouRui QinYu ChenHong LiZhengxiang GaoGuangping LiWai Ning MeiYutaka MaedaTakeshi Akasakaand Stefano Sanvito
This paper describes a new method to create nanoscale SiO2 pits or channels using single-walled carbon nanotubes (SWNTs) in an HF solution at room temperature within a few seconds. Using aligned SWNT arrays, a pattern of nanoscale SiO2 channels can be prepared. The nanoscale SiO2 patterns can also be created on the surface of three- dimensional (3D) SiO2 substrate and even the nanoscale trenches can be constructed with arbitrary shapes. A possible mechanism for this enhanced etching of SiO2 has been qualitatively analysed using defects in SWNTs, combined with H3O+ electric double layers around SWNTs in an HF solution.
Diameter- and chirality-dependent interactions between aromatic molecule-based nanotweezers and single-walled carbon nanotubes (SWNTs) are revealed by density functional theory calculations. We found that the threshold diameter of selected SWNTs is determined by the end-to-end distance of the nanotweezer. Large-diameter SWNTs are preferred by a nanotweezer with an obtuse folding angle, whereas small-diameter SWNTs are favored by a nanotweezer with an acute folding angle. The adsorption can be further stabilized by the orientational alignment of the hexagonal rings of the nanotweezer and the SWNT sidewall. Therefore, by taking advantage of the supramolecular recognition ability of the aromatic molecule-based nanotweezer, SWNTs can be enriched with both controllable diameter and chirality.