研究了采用双框架控制力矩陀螺(Double Gimbaled Control Momentum Gyroscope,DGCMG)的敏捷卫星姿态/角动量联合控制问题,针对DGCMG的饱和奇异问题,提出了基于Lyapunov的姿态/角动量联合控制方法。首先,建立了采用两个平行构型DGCMG的卫星姿态动力学模型,然后根据陀螺的力矩方程,通过可视化分析得出该构型只有内部隐奇异和饱和奇异两类奇异。隐奇异可以通过操纵律进行避免,而饱和奇异只能通过卸载方式来解决。为了避免采用推力器或磁力矩器等卸载方式带来的问题,设计了连续管理角动量的姿态/角动量联合控制器。此外,为了缩短系统的稳定时间,采用Sigmoid函数对控制器的参数选取进行了改进。该控制器完成敏捷卫星快速机动快速稳定任务的同时,还能连续调节角动量,达到姿态控制和角动量管理的折中。数值仿真结果验证了控制器的有效性。
Aimed at low accuracy of attitude determination because of using low-cost components which may result in non-linearity in integrated attitude determination systems, a novel attitude determination algorithm using vector observations and gyro measurements is presented. The various features of the unscented Kalman filter (UKF) and optimal-REQUEST (quaternion estimator) algorithms are introduced for attitude determination. An interlaced filtering method is presented for the attitude determination of nano-spacecraft by setting the quaternion as the attitude representation, using the UKF and optimal-REQUEST to estimate the gyro drifts and the quaternion, respectively. The optimal-REQUEST and UKF are not isolated from each other. When the optimal-REQUEST algorithm estimates the attitude quaternion, the gyro drifts are estimated by the UKF algorithm synchronously by using the estimated attitude quaternion. Furthermore, the speed of attitude determination is improved by setting the state dimension to three. Experimental results show that the presented method has higher performance in attitude determination compared to the UKF algorithm and the traditional interlaced filtering method and can estimate the gyro drifts quickly.