The ultrastructure of extrusomes of the hypotrichous ciliate Pseudourostyla nova was observed in scanning and transmission electron microscopy and enzyme-cytochemistry. The results show that the distribution, morphological characteristics, morphogenesis process, and extrusive process of the extrusomes in P. nova are different from the trichocysts in Paramecium, suggesting that the extrusomes of P. nova can respond to environmental stimuli, play an important role in the defense of this species, and cannot be regarded as "trichocysts". The results also suggest that the extrusomes might be originated from the Golgi apparatus and mature in the cytoplasm; after the extrusion of mature extrusomes, the residual substance might be reabsorbed and reused by the ciliate cell via food vacuoles, and take part in material recycling of the cell.
We examined the structure and spatial organization of ciliature base-associated microtubules (BAM) in three hypotrichous ciliates (Stylonychia mytilus, Pseudourostyla cristata, Euplotes woodruffi) in fluorescence microscopy. The results revealed that BAM, including the anterior (ALM), posterior longitudinal microtubule (PLM) and the transverse microtubule (TM) bands, are composed of tubulin. The respective microtubular bands have cytoplasmic polarization patterns that are significantly asymmetric. The BAM of the midventral files in P. cristata appear cord-shaped compared with the ALM bands of transverse cirri in both S. mytilus and E. woodruffi, which extend to the left anterior side of the cell before converging. The TM bands of the left marginal cirri (MC) in S. rnytilus extend to the right side of the cell, while those of the right MC bands extend to the left. Our observations suggest that BAM traits are common in hypotrichous ciliates even though different species possess different microtubule arrangements related to the conserved cirral morphogenetic patterns in the respective species. The differing development of BAM in the three ciliate suggests that the microtubules may be conserved in different hypotrichs. We have also demonstrated that the BAM, which appear polar and asymmetric, are localized in specific cytoskeletal positions and extend in different orientations within the cortex to connect with other ciliature-associated structures and, thus, strengthen the cortex. These BAM features indicate that they are directly associated with cell motion.