您的位置: 专家智库 > >

国家自然科学基金(41105095)

作品数:3 被引量:9H指数:2
相关作者:王秀娟夏葳姜忠宝张超杨洁帆更多>>
相关机构:吉林省气候中心大连市气象局中国科学院大气物理研究所更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇天文地球

主题

  • 1篇数值模拟
  • 1篇数值模拟与分...
  • 1篇微物理
  • 1篇OBSERV...
  • 1篇RADAR
  • 1篇SOUTHE...
  • 1篇WRF
  • 1篇CONTEN...
  • 1篇DATA_A...
  • 1篇HEAVY_...
  • 1篇ING
  • 1篇MODELI...
  • 1篇层状云
  • 1篇EVENT
  • 1篇MIXED-...
  • 1篇值模拟

机构

  • 1篇吉林省气象局
  • 1篇中国科学院大...
  • 1篇大连市气象局
  • 1篇吉林省气候中...

作者

  • 1篇杨洁帆
  • 1篇张超
  • 1篇姜忠宝
  • 1篇夏葳
  • 1篇王秀娟

传媒

  • 1篇Advanc...
  • 1篇气象与环境学...
  • 1篇Atmosp...

年份

  • 1篇2015
  • 1篇2014
  • 1篇2013
3 条 记 录,以下是 1-3
排序方式:
河北一次层状云系降水的微物理机制数值模拟与分析被引量:5
2014年
利用一维层状云模式,详细分析了2009年5月1日中国中东部地区一次层状云系的微物理结构和降水过程。结果表明:此次降水为层状云系降水,云系垂直结构符合顾震潮3层概念模型和"播种云—供给云"机制,其中第一层(上层:4.7—7.0 km)存在冰雪晶,雪主要通过冰晶自动转化和凝华增长;第二层(中层:2.6—4.6 km)有冰晶、雪、霰、云水和雨滴,此层贝吉龙过程作用明显;第三层(下层:1.3—2.5 km)主要粒子为云滴、雨滴及从上层融化的雪和霰,霰的融化对雨滴的形成贡献最大。云体发展成熟时,各层之间存在一定的播种—供应关系,如第一层向第二层顶部播撒雪和冰晶,第二层向第三层顶部播撒霰和雪。
王秀娟姜忠宝杨洁帆夏葳张超
关键词:层状云微物理
Observations and Modeling of Ice Water Content in a Mixed-Phase Cloud System被引量:2
2013年
The ice water content(IWC) distribution in a mixed-phase cloud system was investigated using Cloud-Sat data,aircraft measurements,and the Weather Research and Forecasting(WRF) model.Simulated precipitation and IWC were in general agreement with rain gauge,sat-ellite,and aircraft observations.The cloud case was char-acterized by a predominant cold layer and high IWC throughout the cloud-development and precipitation stages.The CloudSat-retrieved products suggested that the IWC was distributed from 4.0 to 8.0 km,with the maximum values(up to 0.5 g m-3) at 5.0-6.0 km at the earlymature stage of cloud development.High IWC(up to 0.8 g m-3) was also detected by airborne probes at 4.2 and 3.6 km at the late-mature stage.The WRF model simulation re-vealed that the predominant riming facilitated rapid ac-cumulation of high IWC at 3.0-6.0 km.
HOU Tuan-JieLEI Heng-ChiHU Zhao-XiaFENG Qiu-Juan
关键词:WRF
Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China被引量:2
2015年
To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) pack- age. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.
HOU TuanjieFanyou KONGCHEN XunlaiLEI HengchiHU Zhaoxia
共1页<1>
聚类工具0