K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.
A fully discrete finite difference scheme for dissipative Klein-Gordon-SchrSdinger equations in three space dimensions is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions and discrete version of Sobolev embedding the- orems, the stability of the difference scheme and the error bounds of optimal order for the difference solutions are obtained in H2 × H2 ×H1 over a finite time interval. Moreover, the existence of a maximal attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.